allocator_facade.cc 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/allocation/allocator.h"
S
sneaxiy 已提交
16
#include <gflags/gflags.h>
17
#include <map>
Y
Yu Yang 已提交
18
#include <string>
S
sneaxiy 已提交
19
#include <unordered_map>
20 21 22
#include <vector>
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/memory/allocation/auto_increment_allocator.h"
25
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
Y
Yu Yang 已提交
26
#include "paddle/fluid/memory/allocation/conditional_allocator.h"
27
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
29
#include "paddle/fluid/memory/allocation/locked_allocator.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/memory/allocation/retry_allocator.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/memory/allocation/zero_size_allocator.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/platform/cpu_info.h"
33 34 35
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
S
sneaxiy 已提交
36 37 38
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
#include "paddle/fluid/platform/gpu_info.h"
39 40
#endif

S
sneaxiy 已提交
41
DEFINE_int64(
S
sneaxiy 已提交
42 43 44 45
    gpu_allocator_retry_time, 0,
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

46 47 48 49
namespace paddle {
namespace memory {
namespace allocation {

Y
Yu Yang 已提交
50
// TODO(yy): Dirty code here. This class should be configurable in runtime.
Y
Yu Yang 已提交
51
class CPUManagedAllocator : public Allocator {
Y
Yu Yang 已提交
52
 public:
Y
Yu Yang 已提交
53
  CPUManagedAllocator() : normal_allocator_(new CPUAllocator()) {}
Y
Yu Yang 已提交
54

Y
Yu Yang 已提交
55
  bool IsAllocThreadSafe() const override { return true; }
Y
Yu Yang 已提交
56

Y
Yu Yang 已提交
57 58 59 60 61
 protected:
  Allocation* AllocateImpl(size_t size, Allocator::Attr attr) override {
    return normal_allocator_->Allocate(size, attr).release();
  }

Y
Yu Yang 已提交
62
 private:
Y
Yu Yang 已提交
63
  std::shared_ptr<Allocator> normal_allocator_;
Y
Yu Yang 已提交
64 65
};

Y
Yu Yang 已提交
66
// TODO(yy): Dirty code here. This class should be configurable in runtime.
Y
Yu Yang 已提交
67
class ChunkedManagedAllocator : public Allocator {
68
 public:
S
sneaxiy 已提交
69 70 71 72
  explicit ChunkedManagedAllocator(std::unique_ptr<Allocator> system_allocator,
                                   size_t max_chunk_size, size_t capacity = 1,
                                   int64_t retry_time = -1)
      : max_chunk_size_(max_chunk_size), retry_time_(retry_time) {
Y
Yu Yang 已提交
73
    raw_allocator_ = std::move(system_allocator);
S
sneaxiy 已提交
74 75 76 77 78

    if (max_chunk_size_ == 0) {
      default_allocator_ = raw_allocator_;
    } else {
      if (capacity == 1) {
S
sneaxiy 已提交
79 80
        VLOG(10) << "Create BestFitAllocator with chunk_size "
                 << max_chunk_size_;
S
sneaxiy 已提交
81 82
        default_allocator_ = BestFitAllocatorCreator();
      } else {
S
sneaxiy 已提交
83 84
        VLOG(10) << "Create AutoIncrementAllocator with chunk_size "
                 << max_chunk_size_ << " and capacity " << capacity;
S
sneaxiy 已提交
85 86 87 88
        default_allocator_ = std::make_shared<AutoIncrementAllocator>(
            [this] { return std::move(BestFitAllocatorCreator()); }, capacity);
      }
    }
Y
Yu Yang 已提交
89 90 91 92 93 94 95 96 97 98 99 100

    auto* cond_allocator = new ConditionalAllocator();
    cond_allocator
        ->AddAllocator(
            [this](size_t size, Attr attr) { return size < max_chunk_size_; },
            default_allocator_)
        .AddAllocator(
            [](size_t size, Attr attr) {
              return true;  // default case
            },
            raw_allocator_);
    default_allocator_.reset(cond_allocator);
Y
Yu Yang 已提交
101
  }
102

S
sneaxiy 已提交
103
  ~ChunkedManagedAllocator() {
104
    // Specify destruct order.
Y
Yu Yang 已提交
105 106 107 108 109
    default_allocator_.reset();
    chunks_.clear();
    raw_allocator_.reset();
  }

Y
Yu Yang 已提交
110
  std::shared_ptr<Allocator> BestFitAllocatorCreator() {
Y
Yu Yang 已提交
111 112
    chunks_.emplace_back(raw_allocator_->Allocate(max_chunk_size_));
    auto* allocation = chunks_.back().get();
S
sneaxiy 已提交
113 114 115
    std::unique_ptr<Allocator> unmanaged_allocator(new LockedAllocator(
        std::unique_ptr<Allocator>(new BestFitAllocator(allocation))));

S
sneaxiy 已提交
116
    if (retry_time_ <= 0) {
S
sneaxiy 已提交
117 118
      VLOG(10) << "Create NaiveManagedAllocator without retry";
      return std::make_shared<AlignedAllocator<64u>>(
Y
Yu Yang 已提交
119
          std::move(unmanaged_allocator));
S
sneaxiy 已提交
120
    } else {
S
sneaxiy 已提交
121 122
      VLOG(10) << "Create RetryAllocator with retry_time " << retry_time_
               << "ms";
Y
Yu Yang 已提交
123 124 125
      auto tmp = std::make_shared<RetryAllocator>(
          std::move(unmanaged_allocator), static_cast<size_t>(retry_time_));
      return std::make_shared<AlignedAllocator<64u>>(tmp);
S
sneaxiy 已提交
126
    }
127
  }
S
sneaxiy 已提交
128

Y
Yu Yang 已提交
129 130
  bool IsAllocThreadSafe() const override { return true; }

Y
Yu Yang 已提交
131 132 133 134 135
 protected:
  Allocation* AllocateImpl(size_t size, Allocator::Attr attr) override {
    return default_allocator_->Allocate(size, attr).release();
  }

S
sneaxiy 已提交
136
 protected:
Y
Yu Yang 已提交
137
  size_t max_chunk_size_;
S
sneaxiy 已提交
138
  int64_t retry_time_;
Y
Yu Yang 已提交
139
  std::vector<AllocationPtr> chunks_;
Y
Yu Yang 已提交
140 141
  std::shared_ptr<Allocator> raw_allocator_;
  std::shared_ptr<Allocator> default_allocator_;
Y
Yu Yang 已提交
142
};
S
sneaxiy 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#ifdef PADDLE_WITH_CUDA

class CUDAManagedAllocator : public ChunkedManagedAllocator {
 public:
  explicit CUDAManagedAllocator(int dev_id)
      : ChunkedManagedAllocator(
            std::unique_ptr<Allocator>(
                new CUDAAllocator(platform::CUDAPlace(dev_id))),
            GetMaxChunkSize(dev_id), GetCapcity(dev_id), GetRetryTime()) {}

 private:
  static size_t GetMaxChunkSize(int dev_id) {
    platform::CUDADeviceGuard guard(dev_id);
    return platform::GpuMaxChunkSize();
  }

  static size_t GetCapcity(int dev_id) {
    platform::CUDADeviceGuard guard(dev_id);
    size_t available, total;
    platform::GpuMemoryUsage(&available, &total);
    size_t max_chunk_size = platform::GpuMaxChunkSize();
    return max_chunk_size == 0 ? 0 : available / max_chunk_size;
  }

  static int64_t GetRetryTime() { return FLAGS_gpu_allocator_retry_time; }
};

class CUDAPinnedManagedAllocator : public ChunkedManagedAllocator {
 public:
  CUDAPinnedManagedAllocator()
      : ChunkedManagedAllocator(
            std::unique_ptr<Allocator>(new CPUPinnedAllocator()),
            platform::CUDAPinnedMaxChunkSize(), GetCapacity(), -1) {
  }  // never retry

 private:
  static size_t GetCapacity() {
    size_t total = platform::CpuTotalPhysicalMemory();
    size_t max_chunk_size = platform::CUDAPinnedMaxChunkSize();
    return max_chunk_size == 0 ? 0 : total / max_chunk_size;
  }
};

Y
Refine  
Yu Yang 已提交
187
#endif
Y
Yu Yang 已提交
188 189 190

class AllocatorFacadePrivate {
 public:
Y
Yu Yang 已提交
191
  std::map<platform::Place, std::shared_ptr<Allocator>> allocators_;
Y
Yu Yang 已提交
192

Y
Refine  
Yu Yang 已提交
193
  ~AllocatorFacadePrivate() = default;
194 195

  AllocatorFacadePrivate() {
Y
Yu Yang 已提交
196 197 198 199 200 201 202 203
    if (GetAllocatorStrategy() == AllocatorStrategy::kLegacy) {
      InitLegacyAllocator();
    } else {
      InitCPUAllocator();
      InitCUDAAllocator();
      InitCUDAPinnedAllocator();
      WrapZeroSizeAllocator();
    }
204 205 206
  }

 private:
Y
Yu Yang 已提交
207 208 209 210 211 212
  void InitLegacyAllocator() {
    std::vector<platform::Place> places{platform::CPUPlace()};
#ifdef PADDLE_WITH_CUDA
    for (int dev_id = 0; dev_id < platform::GetCUDADeviceCount(); ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
Y
Yu Yang 已提交
213
    places.emplace_back(platform::CUDAPinnedPlace());
Y
Yu Yang 已提交
214 215 216 217 218 219
#endif
    for (auto& p : places) {
      allocators_[p] = std::make_shared<LegacyAllocator>(p);
    }
  }

220
  void InitCPUAllocator() {
Y
Yu Yang 已提交
221
    allocators_[platform::CPUPlace()] = std::make_shared<CPUManagedAllocator>();
222 223 224 225
  }

  void InitCUDAAllocator() {
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
226 227
    int device_count = platform::GetCUDADeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
228
      allocators_[platform::CUDAPlace(dev_id)] =
Y
Yu Yang 已提交
229
          std::make_shared<CUDAManagedAllocator>(dev_id);
230 231 232
    }
#endif
  }
Y
Yu Yang 已提交
233

S
sneaxiy 已提交
234 235 236 237 238 239 240
  void InitCUDAPinnedAllocator() {
#ifdef PADDLE_WITH_CUDA
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CUDAPinnedManagedAllocator>();
#endif
  }

Y
Yu Yang 已提交
241 242 243 244 245 246
  void WrapZeroSizeAllocator() {
    for (auto& pair : allocators_) {
      pair.second =
          std::make_shared<ZeroSizeAllocator>(pair.second, pair.first);
    }
  }
247 248
};

Y
Refine  
Yu Yang 已提交
249
// Pimpl. Make interface clean.
250 251 252 253 254 255 256 257 258 259
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
AllocatorFacade::~AllocatorFacade() { delete m_; }

AllocatorFacade& AllocatorFacade::Instance() {
  static AllocatorFacade instance;
  return instance;
}

std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
    const platform::Place& place, size_t size, Allocator::Attr attr) {
Y
Yu Yang 已提交
260 261
  return std::shared_ptr<Allocation>(Alloc(place, size, attr).release(),
                                     AllocationDeleter());
262 263
}

Y
Yu Yang 已提交
264 265
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     Allocator::Attr attr) {
Y
Yu Yang 已提交
266 267 268 269 270
  auto it = m_->allocators_.find(place);
  if (it == m_->allocators_.end()) {
    throw BadAlloc(
        string::Sprintf("No such allocator for the place, %s", place));
  }
S
sneaxiy 已提交
271
  return m_->allocators_.at(place)->Allocate(size, attr);
272 273 274 275 276
}

}  // namespace allocation
}  // namespace memory
}  // namespace paddle