pool_op_xpu.cc 7.5 KB
Newer Older
D
Double_V 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/pool_op.h"
#include <unordered_map>

#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

xpu::Pooling_t XPUPoolingType(const std::string& pooltype, bool exclusive,
                              bool is_test) {
  if (pooltype == "max") {
    return xpu::Pooling_t::MAX_WITHOUT_INDEX;
  } else if (pooltype == "avg") {
    if (exclusive) {
      return xpu::Pooling_t::AVG_WITHOUT_PAD;
    } else {
      return xpu::Pooling_t::AVG_WITH_PAD;
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Pool op only supports 2D and 3D input."));
  }
}
template <typename DeviceContext, typename T>
class PoolXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    Tensor* out = context.Output<Tensor>("Out");
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool is_test = context.Attr<bool>("is_test");
    bool adaptive = context.Attr<bool>("adaptive");
46 47 48 49 50 51 52 53
    PADDLE_ENFORCE_EQ(
        !adaptive, true,
        platform::errors::InvalidArgument(
            "The Pool2d XPU OP does not support adaptive == true!"));
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The Pool2d XPU OP only support 2 dimension pooling!"));
D
Double_V 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    int* index_data = nullptr;
    if (context.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
    const int c = in_x->dims()[0] * in_x->dims()[1];
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
    const int out_h = out->dims()[2];
    const int out_w = out->dims()[3];
    const int win_h = ksize[0];
    const int win_w = ksize[1];
    const int stride_h = strides[0];
    const int stride_w = strides[1];
    const int pad_up = paddings[0];
    const int pad_down = paddings[0];
    const int pad_left = paddings[1];
    const int pad_right = paddings[1];
    const float* input = in_x->data<float>();
    out->mutable_data<T>(context.GetPlace());
    float* output = out->data<float>();
    xpu::Pooling_t pool_type = XPUPoolingType(pooling_type, exclusive, is_test);
    auto& dev_ctx = context.template device_context<DeviceContext>();
    int r = xpu::pooling_forward<float, float>(
        dev_ctx.x_context(), input, output, index_data, pool_type, c, in_h,
        in_w, pad_left, pad_right, pad_up, pad_down, win_h, win_w, stride_h,
        stride_w, out_h, out_w);
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
85 86 87 88
        platform::errors::External(
            "The pool2d XPU API return wrong value[%d], please check "
            "where Baidu Kunlun Card is properly installed.",
            r));
D
Double_V 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  }
};
template <typename DeviceContext, typename T>
class PoolGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool adaptive = context.Attr<bool>("adaptive");
    const int* index_data = nullptr;
107 108 109 110 111 112 113 114 115
    PADDLE_ENFORCE_EQ(
        !adaptive, true,
        platform::errors::InvalidArgument(
            "The Pool2d XPU OP does not support adaptive == true!"));
    PADDLE_ENFORCE_EQ(ksize.size(), 2, platform::errors::InvalidArgument(
                                           "The Pool2d XPU OP only support 2 "
                                           "dimension pooling!, but received "
                                           "%d-dimension pool kernel size",
                                           ksize.size()));
D
Double_V 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    if (context.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
    if (!in_x_grad) {
      return;
    }
    const int c = in_x->dims()[0] * in_x->dims()[1];
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
    const int out_h = out->dims()[2];
    const int out_w = out->dims()[3];
    const int win_h = ksize[0];
    const int win_w = ksize[1];
    const int stride_h = strides[0];
    const int stride_w = strides[1];
    const int pad_up = paddings[0];
    const int pad_down = paddings[0];
    const int pad_left = paddings[1];
    const int pad_right = paddings[1];
    const float* input = in_x->data<float>();
    const float* output = out->data<float>();
    const float* output_grad = out_grad->data<float>();
    in_x_grad->mutable_data<T>(context.GetPlace());
    float* input_grad = in_x_grad->data<float>();
    xpu::Pooling_t pool_type = XPUPoolingType(pooling_type, exclusive, false);
    auto& dev_ctx = context.template device_context<DeviceContext>();
    // Need to init memory in the first place
    const int zero = 0;
    int r =
        xpu::memset(dev_ctx.x_context(), reinterpret_cast<void**>(input_grad),
                    zero, in_x_grad->numel() * sizeof(float));
150 151 152 153 154 155
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External(
            "The Pool2d XPU OP return wrong value[%d], please check "
            "where Baidu Kunlun Card is properly installed.",
            r));
D
Double_V 已提交
156 157 158 159
    r = xpu::pooling_backward(dev_ctx.x_context(), input, output, index_data,
                              output_grad, input_grad, pool_type, c, in_h, in_w,
                              pad_left, pad_right, pad_up, pad_down, win_h,
                              win_w, stride_h, stride_w, out_h, out_w);
160 161 162 163 164 165
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External(
            "The Pool2d XPU OP return wrong value[%d], please check "
            "where Baidu Kunlun Card is properly installed.",
            r));
D
Double_V 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    pool2d, ops::PoolXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    pool2d_grad,
    ops::PoolGradXPUKernel<paddle::platform::XPUDeviceContext, float>);

#endif