rmsprop.py 10.4 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghuancoder 已提交
15 16
from paddle import _C_ops

M
MRXLT 已提交
17
from ..fluid import framework
W
wanghuancoder 已提交
18
from ..fluid.framework import in_dygraph_mode
19
from .optimizer import Optimizer
M
MRXLT 已提交
20

21 22
__all__ = []

M
MRXLT 已提交
23 24

class RMSProp(Optimizer):
25
    r"""
M
MRXLT 已提交
26 27 28 29 30 31 32 33
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

34
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
35

36
        w & = w - \frac{\eta} {\sqrt{r(w,t) + \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
37 38 39 40 41 42 43 44 45

    The first equation calculates moving average of the squared gradient for
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

46
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
47

48 49
        v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) +
            \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
50 51 52 53 54 55 56

        w & = w - v(w, t)

    if centered is True:

    ..  math::

57
        r(w, t) & = \rho r(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2
M
MRXLT 已提交
58

59
        g(w, t) & = \rho g(w, t-1) + (1 - \rho)\nabla Q_{i}(w)
M
MRXLT 已提交
60

61 62
        v(w, t) & = \beta v(w, t-1) + \frac{\eta} {\sqrt{r(w,t) - (g(w, t))^2 +
            \epsilon}} \nabla Q_{i}(w)
M
MRXLT 已提交
63 64 65

        w & = w - v(w, t)

S
sunzhongkai588 已提交
66 67
    where, :math:`\rho` is a hyperparameter and typical values are 0.9, 0.95
    and so on. :math:`\beta` is the momentum term. :math:`\epsilon` is a
M
MRXLT 已提交
68 69 70 71 72
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Parameters:
73
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
S
sunzhongkai588 已提交
74
          It can be a float value or a LRScheduler.
75 76
        rho(float, optional): rho is :math:`\rho` in equation, default is 0.95.
        epsilon(float, optional): :math:`\epsilon` in equation is smoothing term to
S
sunzhongkai588 已提交
77
          avoid division by zero, default is 1e-6.
78
        momentum(float, optional): :math:`\beta` in equation is the momentum term,
S
sunzhongkai588 已提交
79
          default is 0.0.
80
        centered(bool, optional): If True, gradients are normalized by the estimated variance of
S
sunzhongkai588 已提交
81 82 83
          the gradient; if False, by the uncentered second moment. Setting this to
          True may help with training, but is slightly more expensive in terms of
          computation and memory. Defaults to False.
84 85 86 87 88
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``.
          This parameter is required in dygraph mode. And you can specify different options for
          different parameter groups such as the learning rate, weight decay, etc,
          then the parameters are list of dict. Note that the learning_rate in paramter groups
          represents the scale of base learning_rate.
S
sunzhongkai588 已提交
89
          The default value is None in static mode, at this time all parameters will be updated.
90
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization.
S
sunzhongkai588 已提交
91 92
          It canbe a float value as coeff of L2 regularization or \
          :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
93 94 95
          If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already,
          the regularization setting here in optimizer will be ignored for this parameter.
          Otherwise, the regularization setting here in optimizer will take effect.
S
sunzhongkai588 已提交
96
          Default None, meaning there is no regularization.
97
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
S
sunzhongkai588 已提交
98 99 100
          some derived class of ``GradientClipBase`` . There are three cliping strategies
          ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
          :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
101
        name (str, optional): This parameter is used by developers to print debugging information.
S
sunzhongkai588 已提交
102
          For details, please refer to :ref:`api_guide_Name`. Default is None.
M
MRXLT 已提交
103 104 105 106 107 108

    Examples:
          .. code-block:: python

            import paddle

109
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
110 111 112 113
            linear = paddle.nn.Linear(10, 10)
            out = linear(inp)
            loss = paddle.mean(out)

114 115 116
            rmsprop = paddle.optimizer.RMSProp(learning_rate=0.1,
                             parameters=linear.parameters(),
                                       weight_decay=0.01)
M
MRXLT 已提交
117
            out.backward()
118 119
            rmsprop.step()
            rmsprop.clear_grad()
M
MRXLT 已提交
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            rmsprop = paddle.optimizer.RMSProp(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
137
                weight_decay=0.01)
138 139 140
            out.backward()
            rmsprop.step()
            rmsprop.clear_grad()
M
MRXLT 已提交
141 142 143 144 145 146
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
    _mean_grad_acc_str = "mean_grad"

147 148 149 150 151 152 153 154 155 156 157 158
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
M
MRXLT 已提交
159 160 161 162 163 164 165 166
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")
M
MRXLT 已提交
167 168 169 170 171 172
        if not 0.0 <= epsilon:
            raise ValueError("Invalid value of epsilon, expect epsilon >= 0.")
        if not 0.0 <= momentum:
            raise ValueError("Invalid value of momentum, expect momentum >= 0.")
        if not 0.0 <= rho:
            raise ValueError("Invalid value of rho, expect rho >= 0.")
M
MRXLT 已提交
173

174
        super().__init__(
175 176 177 178 179 180
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
M
MRXLT 已提交
181 182 183 184 185 186

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
        self._centered = centered
187 188 189 190 191 192
        self._default_dict = {
            'rho': rho,
            'epsilon': epsilon,
            'momentum': momentum,
            'centered': centered,
        }
M
MRXLT 已提交
193 194 195 196 197

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

198 199 200
        if isinstance(parameters, dict):
            parameters = parameters.get('params')

M
MRXLT 已提交
201 202 203 204 205 206 207 208 209
        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
            self._add_accumulator(self._mean_grad_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

210 211 212
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)

213 214 215 216 217 218 219 220 221
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
M
MRXLT 已提交
222

W
wanghuancoder 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        if in_dygraph_mode():
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
            )
            return None
        else:
            rmsprop_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": momentum_acc,
                    "MeanSquare": mean_square_acc,
                    "MeanGrad": mean_grad_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": momentum_acc,
                    "MeanSquareOut": mean_square_acc,
                    "MeanGradOut": mean_grad_acc,
                },
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
                    "centered": self._centered,
                },
                stop_gradient=True,
            )

            return rmsprop_op
264 265 266 267

    def _update_param_group(self, parameters):
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self._rho = parameters.get('rho', self._default_dict['rho'])
268 269 270 271 272 273
        self._momentum = parameters.get(
            'momentum', self._default_dict['momentum']
        )
        self._centered = parameters.get(
            'centered', self._default_dict['centered']
        )
274 275
        parameters = parameters.get('params')
        return parameters