context_project.h 12.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/operators/math/im2col.h"

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
25 26
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
C
chengduoZH 已提交
27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
C
chengduoZH 已提交
30

C
chengduoZH 已提交
31
/*
C
chengduoZH 已提交
32
 * \brief Context projection concatenates features in adjacent time-steps in
C
chengduoZH 已提交
33 34 35
 * a sequence. The i-th row of the output is the concatenation of
 * context_length rows of the input. The context_length rows are the
 * consecutive rows from the i+shift_start row.
C
sss  
chengduoZH 已提交
36
 * ContextProjectGradFunctor is the inverse process of ContextProjectFunctor.
C
chengduoZH 已提交
37
 *
C
chengduoZH 已提交
38
 * \param in            Input data.
C
chengduoZH 已提交
39 40
 * \param Shape         The shape of Input data:
 *                        [mini-batch, input_hidden_size].
C
chengduoZH 已提交
41
 *
C
chengduoZH 已提交
42
 * \param padding_data  Padding data.
C
chengduoZH 已提交
43 44
 * \param Shape         The shape of Padding data:
 *                        [up_pad + down_pad, input_hidden_size].
C
chengduoZH 已提交
45
 *
C
chengduoZH 已提交
46
 * \param col           Col data.
C
chengduoZH 已提交
47 48
 * \param Shape         The shape of Col data:
 *                        [mini-batch, context_length * input_hidden_size].
C
chengduoZH 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 *
 * For a mini-batch of 2 variable lengths sentences, containing 3, and 1
 * time-steps:
 *
 * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
 * 4].
 * Besides, for the sake of simplicity, we assume M=1 and N=2.
 *
 * X = [[a1, a2;
 *       b1, b2;
 *       c1, c2]
 *      [d1, d2]]
 *
 * This is to say that input (X) has 4 words and the dimension of each word
 * representation is 2.
 *
 * - Case1:
C
chengduoZH 已提交
66 67 68
 *   If context_start is -1 and padding_trainable is false, we use zero to pad
 *   instead of learned weight to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
69
 *
C
chengduoZH 已提交
70 71 72 73
 *   Out =[[0,  0,  a1, a2, b1, b2;
 *          a1, a2, b1, b2, c1, c2;
 *          b1, b2, c1, c2, 0,  0 ]
 *          [0,  0, d1, d2, 0,  0 ]]
C
chengduoZH 已提交
74 75
 *
 * - Case2:
C
chengduoZH 已提交
76 77 78
 *   If context_start is -1 and padding_trainable is true, we use learned weight
 *   to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
79
 *
C
chengduoZH 已提交
80 81 82 83
 *   Out = [[w1, w2, a1, a2, b1, b2;
 *           a1, a2, b1, b2, c1, c2;
 *           b1, b2, c1, c2, w3, w4]
 *          [w1, w2, d1, d2, w3, w4]]
C
chengduoZH 已提交
84 85 86 87
 *
 */

template <typename Place, typename T>
C
chengduoZH 已提交
88
class ContextProjectFunctor {
C
chengduoZH 已提交
89
 public:
C
chengduoZH 已提交
90 91
  void operator()(const platform::DeviceContext& context, const LoDTensor& in,
                  const Tensor& padding_data, Tensor& col,
C
sss  
chengduoZH 已提交
92 93
                  bool padding_trainable, int context_start, int context_length,
                  int context_stride, int up_pad, int down_pad) {
C
chengduoZH 已提交
94
    auto lod_level_0 = in.lod()[0];
C
chengduoZH 已提交
95

C
chengduoZH 已提交
96
    math::Im2ColFunctor<math::ColFormat::kOCF, Place, float> im2col_ocf;
C
sss  
chengduoZH 已提交
97 98 99 100 101 102 103 104 105 106 107

    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
    sequence_width = in.dims()[1];

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

C
chengduoZH 已提交
108 109
      Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                               static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
110 111 112 113

      sequence_height = static_cast<int>(out_t.dims()[0]);

      if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
114
        Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
sss  
chengduoZH 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

        std::vector<int64_t> output_shape(
            {sequence_height, 1, 1, context_length,
             sequence_width});  // output_height, output_width,
        // input_channels, filter_height, filter_width
        out_t.Resize(framework::make_ddim(output_shape));

        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));

        im2col_ocf(context, in_t, out_t,
                   /*stride_height*/ context_stride, /*stride_width*/ 1, up_pad,
                   down_pad, 0, 0);
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
    if (padding_trainable) {
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
C
chengduoZH 已提交
135 136
        Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                 static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149

        sequence_height = static_cast<int>(out_t.dims()[0]);

        // add up trainable data
        out_t.Resize({sequence_height * context_length, sequence_width});

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
150 151 152
            Tensor out_t_sub = out_t.Slice(k * context_length,
                                           k * context_length + padding_size);
            Tensor w_sub = padding_data.Slice(k, k + padding_size);
C
sss  
chengduoZH 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
            }
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
C
chengduoZH 已提交
179 180

            Tensor out_t_sub = out_t.Slice(
C
sss  
chengduoZH 已提交
181 182
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
183
            Tensor w_sub = padding_data.Slice(
C
sss  
chengduoZH 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
  }
};

template <typename Place, typename T>
class ContextProjectGradFunctor {
 public:
C
chengduoZH 已提交
199 200
  void operator()(const platform::DeviceContext& context, LoDTensor& in,
                  Tensor& padding_data, Tensor& col, bool padding_trainable,
C
sss  
chengduoZH 已提交
201 202 203 204
                  int context_start, int context_length, int context_stride,
                  int up_pad, int down_pad, bool input_grad, bool pad_grad) {
    auto lod_level_0 = in.lod()[0];

C
chengduoZH 已提交
205
    math::Col2ImFunctor<math::ColFormat::kOCF, Place, float> col2im_ocf;
C
chengduoZH 已提交
206 207 208

    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
C
chengduoZH 已提交
209 210
    sequence_width = in.dims()[1];

C
sss  
chengduoZH 已提交
211
    if (input_grad) {
C
chengduoZH 已提交
212 213 214 215 216 217
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        input_row_begin = (context_start > 0)
                              ? static_cast<int>(lod_level_0[i]) + context_start
                              : static_cast<int>(lod_level_0[i]);
        input_row_end = static_cast<int>(lod_level_0[i + 1]);

C
chengduoZH 已提交
218 219
        Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                 static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
220 221 222 223

        sequence_height = static_cast<int>(out_t.dims()[0]);

        if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
224
          Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
chengduoZH 已提交
225 226 227 228 229 230 231 232 233 234 235 236

          std::vector<int64_t> output_shape(
              {sequence_height, 1, 1, context_length,
               sequence_width});  // output_height, output_width,
          // input_channels, filter_height, filter_width
          out_t.Resize(framework::make_ddim(output_shape));

          std::vector<int64_t> input_shape(
              {1, input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(framework::make_ddim(input_shape));

C
sss  
chengduoZH 已提交
237 238 239
          col2im_ocf(context, in_t, out_t,
                     /*stride_height*/ context_stride, /*stride_width*/ 1,
                     up_pad, down_pad, 0, 0);
C
chengduoZH 已提交
240
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
241
        }
C
chengduoZH 已提交
242
      }
C
chengduoZH 已提交
243
    }
C
sss  
chengduoZH 已提交
244
    if (pad_grad) {
C
chengduoZH 已提交
245
      if (padding_trainable) {
C
chengduoZH 已提交
246
        for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
C
chengduoZH 已提交
247 248
          Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                   static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
249 250

          sequence_height = static_cast<int>(out_t.dims()[0]);
C
chengduoZH 已提交
251
          out_t.Resize({sequence_height * context_length, sequence_width});
C
chengduoZH 已提交
252

C
sss  
chengduoZH 已提交
253
          if (up_pad > 0) {
C
chengduoZH 已提交
254 255 256 257 258 259
            int padding_rows = std::min(
                up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

            for (int k = 0; k < padding_rows; ++k) {
              int padding_size =
                  k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
260 261 262
              Tensor out_t_sub = out_t.Slice(k * context_length,
                                             k * context_length + padding_size);
              Tensor w_sub = padding_data.Slice(k, k + padding_size);
C
chengduoZH 已提交
263 264
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
265 266
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
267
            }
C
chengduoZH 已提交
268
          }
C
sss  
chengduoZH 已提交
269
          if (down_pad > 0) {
C
chengduoZH 已提交
270 271 272 273 274 275 276 277 278
            int down_pad_begin_row =
                std::max(
                    0, (sequence_height - context_start - context_length) + 1) +
                1;
            int padding_begin = std::max(0, context_start - sequence_height);
            int padding_size =
                sequence_height - context_start >= context_length
                    ? 1
                    : context_length - (sequence_height - context_start);
C
chengduoZH 已提交
279
            if (context_start >= sequence_height) padding_size = context_length;
C
chengduoZH 已提交
280 281 282 283 284 285 286 287 288 289 290
            int padding_idx = padding_begin;
            for (int t = 0; t + down_pad_begin_row <= sequence_height;
                 ++t, ++padding_size) {
              if (context_start >= sequence_height)
                padding_size = context_length;
              if (padding_size > context_length) {
                padding_size = context_length;
                padding_idx++;
              }
              if (padding_begin > 0 || sequence_height == context_start)
                padding_idx = padding_begin + t;
C
chengduoZH 已提交
291 292

              Tensor out_t_sub = out_t.Slice(
C
chengduoZH 已提交
293 294
                  (down_pad_begin_row + t) * context_length - padding_size,
                  (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
295
              Tensor w_sub = padding_data.Slice(
C
chengduoZH 已提交
296 297 298
                  up_pad + padding_idx, up_pad + padding_idx + padding_size);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
299 300
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
301 302
            }
          }
C
chengduoZH 已提交
303
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
304 305 306 307 308 309 310 311 312
        }
      }
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle