“e11398668b3fc03d4a0a396fe67d4324464a80eb”上不存在“projects/binux/imports.yml”
fusion_gru_op.cc 14.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_gru_op.h"
#include <string>
#include "paddle/fluid/framework/eigen.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/detail/activation_functions.h"
T
tensor-tang 已提交
20 21 22
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
23 24 25 26 27 28 29 30
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence2batch.h"

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of GRU should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of GRU should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of GRU should not be null.");

  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Output(XX) of GRU should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedGate"),
                 "Output(BatchedGate) of GRU should not be null.");
T
tensor-tang 已提交
40
  PADDLE_ENFORCE(ctx->HasOutput("BatchResetHiddenPrev"),
T
tensor-tang 已提交
41 42 43
                 "Output(BatchResetHiddenPrev) of GRU should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
                 "Output(BatchedHidden) of GRU should not be null.");
T
tensor-tang 已提交
44
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
                 "Output(Hidden) of GRU should not be null.");

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

T
tensor-tang 已提交
71 72 73 74 75 76
  if (ctx->HasInput("H0")) {
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
77 78 79 80 81
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
82 83
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
84 85 86 87 88 89 90 91 92 93
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("BatchedGate", {x_dims[0], wx_dims[1]});
  ctx->SetOutputDim("BatchedHidden", out_dims);
  ctx->SetOutputDim("BatchResetHiddenPrev", out_dims);
  ctx->ShareLoD("X", "Hidden");

  int xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
94 95 96 97 98 99 100 101 102 103
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
104 105
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
106
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
107 108
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
109 110 111 112 113
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
114 115 116 117 118
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. ");
T
tensor-tang 已提交
119
  AddInput("Bias",
T
tensor-tang 已提交
120 121 122
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
123
      .AsDispensable();
T
tensor-tang 已提交
124 125 126 127 128
  AddOutput("XX",
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
129
      .AsIntermediate();
T
tensor-tang 已提交
130 131
  AddOutput("BatchedGate", "(LoDTensor) Same as GRUOp").AsIntermediate();
  AddOutput("BatchResetHiddenPrev", "(LoDTensor) (T x 3D) Same as GRUOp.")
T
tensor-tang 已提交
132
      .AsIntermediate();
T
tensor-tang 已提交
133
  AddOutput("BatchedHidden", "(LoDTensor) (T X D) Same as GRUOp.")
T
tensor-tang 已提交
134
      .AsIntermediate();
T
tensor-tang 已提交
135
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
}

template <typename DeviceContext, typename T>
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
169 170 171 172 173 174
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* wx = ctx.Input<Tensor>("WeightX");
    auto* wh = ctx.Input<Tensor>("WeightH");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* h0 = ctx.Input<Tensor>("H0");
T
tensor-tang 已提交
175

T
tensor-tang 已提交
176 177 178 179 180 181 182
    auto* xx = ctx.Output<LoDTensor>("XX");
    auto* batched_gate = ctx.Output<LoDTensor>("BatchedGate");
    auto* batch_reset_hidden_prev =
        ctx.Output<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = ctx.Output<LoDTensor>("BatchedHidden");
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    bool is_reverse = ctx.Attr<bool>("is_reverse");
T
tensor-tang 已提交
183

T
tensor-tang 已提交
184 185 186 187 188
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_gate_data = batched_gate->mutable_data<T>(ctx.GetPlace());
    batch_reset_hidden_prev->mutable_data<T>(ctx.GetPlace());
    batch_hidden->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
189

T
tensor-tang 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
    auto x_dims = x->dims();
    auto wx_dims = wx->dims();
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    if (x_dims[1] > wx_dims[1]) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
                                        x_data, wx_data, xx_data,
                                        bias ? bias->data<T>() : NULL);
      to_batch(dev_ctx, *xx, batched_gate, true, is_reverse);
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
      batched_gate->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
                                        xx_data, wx_data, batched_gate_data,
                                        bias ? bias->data<T>() : NULL);
T
tensor-tang 已提交
209 210
    }

T
tensor-tang 已提交
211
    int frame_size = static_cast<int>(wx_dims[1] / 3);
T
tensor-tang 已提交
212
    math::GRUMetaValue<T> gru_value;
T
tensor-tang 已提交
213
    gru_value.gate_weight = const_cast<T*>(wh_data);
T
tensor-tang 已提交
214
    gru_value.state_weight =
T
tensor-tang 已提交
215
        const_cast<T*>(wh_data + 2 * frame_size * frame_size);
T
tensor-tang 已提交
216 217
    Tensor ordered_h0;

T
tensor-tang 已提交
218
    framework::Vector<size_t> order(batched_gate->lod()[2]);
T
tensor-tang 已提交
219 220 221

    if (h0) {
      ReorderInitState<DeviceContext, T>(
T
tensor-tang 已提交
222 223
          ctx.template device_context<DeviceContext>(), *h0, order, &ordered_h0,
          true);
T
tensor-tang 已提交
224 225 226 227
      gru_value.prev_out_value = ordered_h0.data<T>();
    } else {
      gru_value.prev_out_value = nullptr;
    }
T
tensor-tang 已提交
228
    auto batch_starts = batched_gate->lod()[0];
T
tensor-tang 已提交
229
    size_t seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
230 231
    auto active_node =
        math::detail::GetActivationType(ctx.Attr<std::string>("activation"));
T
tensor-tang 已提交
232
    auto active_gate = math::detail::GetActivationType(
T
tensor-tang 已提交
233
        ctx.Attr<std::string>("gate_activation"));
T
tensor-tang 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

#ifdef PADDLE_WITH_MKLML
    // use MKL packed to speedup GEMM
    if (FLAGS_paddle_num_threads >= 4) {
      auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
      T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                       frame_size * 2 /*width of weight*/,
                                       frame_size /*height of height*/);
      PADDLE_ENFORCE(packed_gate);
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size * 2,
                     frame_size, T(1.0), gru_value.gate_weight, frame_size * 2,
                     packed_gate);
      T* packed_state = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
                                        frame_size /*width of weight*/,
                                        frame_size /*height of height*/);
      PADDLE_ENFORCE(packed_state);
      blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size,
                     frame_size, T(1.0), gru_value.state_weight, frame_size,
                     packed_state);
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;

T
tensor-tang 已提交
258
        Tensor gate_t = batched_gate->Slice(bstart, bend);
T
tensor-tang 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();

        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size * 2,
              frame_size, gru_value.prev_out_value, frame_size, packed_gate,
              frame_size * 2, T(1), gru_value.gate_value, frame_size * 3);
        }

        math::detail::forward_reset_output(
            math::detail::forward::gru_resetOutput<T>(), gru_value, frame_size,
            cur_batch_size, active_gate);

        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(
              CblasNoTrans, CblasPacked, cur_batch_size, frame_size, frame_size,
              gru_value.reset_output_value, frame_size, packed_state,
              frame_size, T(1), gru_value.gate_value + frame_size * 2,
              frame_size * 3);
        }

        math::detail::forward_final_output(
            math::detail::forward::gru_finalOutput<T>(), gru_value, frame_size,
            cur_batch_size, active_node);

        gru_value.prev_out_value = gru_value.output_value;
      }

      blas.GEMM_FREE(packed_gate);
      blas.GEMM_FREE(packed_state);
    } else {
#endif
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;

T
tensor-tang 已提交
301
        Tensor gate_t = batched_gate->Slice(bstart, bend);
T
tensor-tang 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();

        math::GRUUnitFunctor<DeviceContext, T>::compute(
            dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
            active_gate);

        gru_value.prev_out_value = gru_value.output_value;
      }
#ifdef PADDLE_WITH_MKLML
    }
#endif
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
319 320
    batch_hidden->set_lod(batched_gate->lod());
    to_seq(dev_ctx, *batch_hidden, hidden_out);
T
tensor-tang 已提交
321 322 323 324 325 326 327 328 329 330 331
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OP_CPU_KERNEL(
    fusion_gru, ops::FusionGRUKernel<paddle::platform::CPUDeviceContext, float>,
T
tensor-tang 已提交
332
    ops::FusionGRUKernel<paddle::platform::CPUDeviceContext, double>);