test_initializer_nn.py 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest

import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.nn.initializer as initializer
from paddle.fluid.core import VarDesc

DELTA = 0.00001


30 31 32 33 34 35
def get_uniform_min_and_max(weight):
    min_value = np.min(weight)
    max_value = np.max(weight)
    return min_value, max_value


36 37 38
def check_cast_op(op):
    return op.type == 'cast' and \
           op.attr('in_dtype') == VarDesc.VarType.FP32 and \
39
           op.attr('out_dtype') in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]
40 41 42


class TestConstantInitializer(unittest.TestCase):
43

44 45 46 47 48 49 50 51
    def static_test_constant_initializer_common(self,
                                                init_inst,
                                                dtype="float32",
                                                value_target=0.0):
        paddle.enable_static()
        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
52 53 54 55 56
            block.create_parameter(dtype=dtype,
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=init_inst)
57
        num_ops = 1
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        self.assertEqual(len(block.ops), num_ops)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), value_target, delta=DELTA)
        paddle.disable_static()
        return block

    def test_constant_initializer_default_value_static(self, dtype="float32"):
        """Test the constant initializer with default value in static graph
        """
        block = self.static_test_constant_initializer_common(
            init_inst=initializer.Constant(), dtype=dtype, value_target=0.0)
        return block

    def test_constant_initializer_default_value_dygraph(self, dtype="float32"):
        """Test constant initializer with supplied value in dygraph
        """
        with fluid.dygraph.guard():
            linear = nn.Linear(2, 4, weight_attr=nn.initializer.Constant())
            mat_target = np.ones((2, 4), dtype=dtype) * 0.0
            mat_linear = linear.weight.numpy()
            mismatch = np.sum(
                (mat_target - mat_linear) * (mat_target - mat_linear))
            self.assertAlmostEqual(mismatch, 0.0, delta=DELTA)

    def test_constant_initializer_static(self, dtype="float32"):
        """Test constant initializer with supplied value in static graph
        """
        block = self.static_test_constant_initializer_common(
            init_inst=initializer.Constant(2.3), dtype=dtype, value_target=2.3)
        return block

    def test_constant_initializer_dygraph(self, dtype="float32"):
        """Test constant initializer with supplied value in dygraph
        """
        with fluid.dygraph.guard():
94 95 96
            linear = nn.Linear(2,
                               4,
                               weight_attr=nn.initializer.Constant(value=2.0))
97 98 99 100 101 102 103 104 105 106 107 108 109 110
            mat_target = np.ones((2, 4), dtype=dtype) * 2.0
            mat_linear = linear.weight.numpy()
            mismatch = np.sum(
                (mat_target - mat_linear) * (mat_target - mat_linear))
            self.assertAlmostEqual(mismatch, 0.0, delta=DELTA)

    def test_constant_initializer_fp16(self):
        """Test constant initializer with float16
        """
        block = self.test_constant_initializer_default_value_static("float16")
        block = self.test_constant_initializer_static("float16")
        self.test_constant_initializer_default_value_dygraph("float16")
        self.test_constant_initializer_dygraph("float16")

111 112 113 114 115 116 117
    def test_constant_initializer_bf16(self):
        """Test constant initializer with bfloat16
            No cast operator has been added here
        """
        self.test_constant_initializer_default_value_static("uint16")  #bfloat16
        self.test_constant_initializer_static("uint16")  #bfloat16

118

119
class TestKaimingInitializer(unittest.TestCase):
120

121 122 123 124 125 126 127 128 129 130
    def static_test_kaiming_initializer_common(self,
                                               init_inst,
                                               dtype="float32",
                                               uniform=False,
                                               is_conv=False):
        paddle.enable_static()
        program = framework.Program()
        block = program.global_block()
        shape_mat = [5, 10, 15, 20] if is_conv else [5, 10]
        for _ in range(2):
131 132 133 134 135
            param = block.create_parameter(dtype="float32",
                                           shape=shape_mat,
                                           lod_level=0,
                                           name="param",
                                           initializer=init_inst)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        if uniform:
            self.assertEqual(init_op.type, 'uniform_random')
            if is_conv:
                receptive_field_size = float(15 * 20)
                limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size))
            else:
                limit = np.sqrt(6.0 / param.shape[0])
            self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
            self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        else:
            self.assertEqual(init_op.type, 'gaussian_random')
            if is_conv:
                receptive_field_size = float(15 * 20)
                std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size))
            else:
                std = np.sqrt(2.0 / param.shape[0])
            self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
            self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        paddle.disable_static()

    def dygraph_test_kaiming_initializer_common(self,
                                                init_inst,
                                                dtype="float32",
                                                uniform=False):
        linear = nn.Linear(40, 20, weight_attr=init_inst)

    def test_kaiming_dygraph(self):
        self.dygraph_test_kaiming_initializer_common(
            init_inst=initializer.KaimingUniform(),
            dtype="float32",
            uniform=True)
        self.dygraph_test_kaiming_initializer_common(
            init_inst=initializer.KaimingNormal(),
            dtype="float32",
            uniform=False)

    def test_kaiming_uniform_initializer_static(self):
        """Test Kaiming unorm initializer for matrix multiply.
        """
        self.static_test_kaiming_initializer_common(
            init_inst=initializer.KaimingUniform(),
            dtype="float32",
            uniform=True,
            is_conv=False)

    def test_kaiming_uniform_initializer_conv_static(self):
        """Test Kaiming unorm initializer for convolutions.
        """
        self.static_test_kaiming_initializer_common(
            init_inst=initializer.KaimingUniform(),
            dtype="float32",
            uniform=True,
            is_conv=True)

    def test_kaiming_normal_initializer_static(self):
        """Test Kaiming normal initializer for matrix multiply.
        """
        self.static_test_kaiming_initializer_common(
            init_inst=initializer.KaimingNormal(),
            dtype="float32",
            uniform=False,
            is_conv=False)

    def test_kaiming_normal_initializer_conv_static(self):
        """Test Kaiming normal initializer for convolutions.
        """
        self.static_test_kaiming_initializer_common(
            init_inst=initializer.KaimingNormal(),
            dtype="float32",
            uniform=False,
            is_conv=True)


211
class TestUniform(unittest.TestCase):
212

213 214 215 216 217 218 219 220 221
    def test_uniform_common(self, dtype="float32", seed=0):
        """Test the uniform initializer with default value
        """
        paddle.enable_static()

        program = framework.Program()
        program.random_seed = seed
        block = program.global_block()
        for _ in range(2):
222 223 224 225 226
            block.create_parameter(dtype=dtype,
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.Uniform())
227
        num_ops = 2 if dtype == "float16" else 1
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        self.assertEqual(len(block.ops), num_ops)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), seed)

        paddle.disable_static()

        return block

    def test_uniform_initializer_default_value(self,
                                               dtype="float32",
                                               seed=0,
                                               min_value=-1.0,
                                               max_vlaue=1.0):
        """Test the uniform initializer with default value
        """
        paddle.enable_static()

        program = framework.Program()
        program.random_seed = seed
        block = program.global_block()
        for _ in range(2):
252 253 254 255 256
            block.create_parameter(dtype=dtype,
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.Uniform())
257
        num_ops = 2 if dtype == "float16" else 1
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        self.assertEqual(len(block.ops), num_ops)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), min_value, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), max_vlaue, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), seed)

        paddle.disable_static()

        return block

    def test_uniform_initializer(self,
                                 dtype="float32",
                                 seed=0,
                                 min_value=-4.2,
                                 max_vlaue=3.1):
        """Test uniform initializer with supplied attributes
        """
        paddle.enable_static()

        program = framework.Program()
        program.random_seed = seed
        block = program.global_block()
        for _ in range(2):
282 283 284 285 286 287
            block.create_parameter(dtype=dtype,
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.Uniform(
                                       min_value, max_vlaue))
288
        num_ops = 2 if dtype == "float16" else 1
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        self.assertEqual(len(block.ops), num_ops)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), min_value, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), max_vlaue, delta=DELTA)

        paddle.disable_static()

        return block

    def test_uniform_initializer_two_op(self,
                                        dtype="float32",
                                        seed=123,
                                        min_value=-4.2,
                                        max_vlaue=0.0):
        """Test uniform initializer with supplied attributes
        """
        paddle.enable_static()

        program = framework.Program()
        program.random_seed = seed
        block = program.global_block()
        for i in range(2):
312 313 314 315 316 317
            block.create_parameter(dtype=dtype,
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.Uniform(
                                       min_value, float(i)))
318
        num_ops = 2 if dtype == "float16" else 1
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        self.assertEqual(len(block.ops), num_ops)
        init_op0 = block.ops[0]
        self.assertEqual(init_op0.type, 'uniform_random')
        self.assertAlmostEqual(init_op0.attr('min'), min_value, delta=DELTA)
        self.assertAlmostEqual(init_op0.attr('max'), 0.0, delta=DELTA)
        self.assertEqual(init_op0.attr("seed"), seed)

        paddle.disable_static()

        return block

    def test_uniform_initializer_fp16(self):
        """Test uniform initializer with float16
        """
        block = self.test_uniform_initializer_default_value("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_uniform_initializer(dtype="float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_uniform_initializer_two_op("float16")
        self.assertTrue(check_cast_op(block.ops[1]))

340 341 342 343 344 345 346
    def test_uniform_initializer_bf16(self):
        """Test uniform initializer with bfloat16
        """
        block = self.test_uniform_initializer_default_value("uint16")  #bfloat16
        block = self.test_uniform_initializer(dtype="uint16")  #bfloat16
        block = self.test_uniform_initializer_two_op("uint16")  #bfloat16

347 348 349 350 351 352 353
    def test_uniform_initializer_dygraph(self):
        """Test uniform initializer in dygraph model.
        """
        paddle.disable_static()

        weight_attr = paddle.framework.ParamAttr(
            name="linear_weight",
354
            initializer=paddle.nn.initializer.Uniform(low=-0.5, high=0.5))
355 356 357 358 359 360 361 362 363 364
        linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)

        min_value, max_value = get_uniform_min_and_max(linear.weight.numpy())
        self.assertTrue(min_value >= -0.5,
                        'min value {} should >= -0.5'.format(min_value))
        self.assertTrue(max_value <= 0.5,
                        'max value {} should <= 0.5'.format(max_value))


class TestNormal(unittest.TestCase):
365

366 367 368 369 370 371 372 373
    def test_normal_initializer_default_value(self):
        """Test the normal initializer with default value
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
374 375 376 377 378
            block.create_parameter(dtype="float32",
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.Normal())
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

        paddle.disable_static()

    def test_normal_initializer(self, dtype="float32"):
        """Test normal initializer with supplied attributes
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
396 397 398 399 400
            block.create_parameter(dtype=dtype,
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.Normal(2.3, 1.9))
401
        num_ops = 1
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        self.assertEqual(len(block.ops), num_ops)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)

        paddle.disable_static()

        return block

    def test_normal_initializer_fp16(self):
        """Test normal initializer with float16
        """
        block = self.test_normal_initializer("float16")

417 418 419 420 421
    def test_normal_initializer_bf16(self):
        """Test normal initializer with bfloat16
        """
        block = self.test_normal_initializer("uint16")  #bfloat16

422 423 424 425 426 427 428
    def test_normal_initializer_dygraph(self):
        """Test normal initializer in dygraph model.
        """
        paddle.disable_static()

        weight_attr = paddle.framework.ParamAttr(
            name="linear_weight",
429
            initializer=paddle.nn.initializer.Normal(mean=0.0, std=2.0))
430 431 432 433
        linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)


class TestTruncatedNormal(unittest.TestCase):
434

435 436 437 438 439 440 441 442
    def test_truncated_normal_initializer_default_value(self):
        """Test the truncated normal initializer with default value
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
443 444 445 446 447
            block.create_parameter(dtype="float32",
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.TruncatedNormal())
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'truncated_gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

        paddle.disable_static()

    def test_truncated_normal_initializer(self, dtype="float32"):
        """Test truncated normal initializer with supplied attributes
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
465 466 467 468 469 470
            block.create_parameter(dtype=dtype,
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.TruncatedNormal(
                                       2.3, 1.9))
471
        num_ops = 2 if dtype in ["float16", "uint16"] else 1
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        self.assertEqual(len(block.ops), num_ops)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'truncated_gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)

        paddle.disable_static()

        return block

    def test_truncated_normal_initializer_fp16(self):
        """Test truncated normal initializer with float16
        """
        paddle.enable_static()

        block = self.test_truncated_normal_initializer("float16")
        self.assertTrue(check_cast_op(block.ops[1]))

490 491 492 493 494 495 496 497
    def test_truncated_normal_initializer_bf16(self):
        """Test truncated normal initializer with bfloat16
        """
        paddle.enable_static()

        block = self.test_truncated_normal_initializer("uint16")  #bfloat16
        self.assertTrue(check_cast_op(block.ops[1]))

498 499 500 501 502 503 504
    def test_truncated_normal_initializer_dygraph(self):
        """Test truncated normal initializer in dygraph model.
        """
        paddle.disable_static()

        weight_attr = paddle.framework.ParamAttr(
            name="linear_weight",
505 506
            initializer=paddle.nn.initializer.TruncatedNormal(mean=0.0,
                                                              std=2.0))
507 508 509 510
        linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)


class TestXavierUniform(unittest.TestCase):
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    def test_xavier_uniform_initializer(self):
        """Test Xavier initializer with uniform distribution on
           for matrix multiply.
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierUniform())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

        paddle.disable_static()

    def test_xavier_uniform_initializer_conv(self):
        """Test Xavier initializer with uniform distribution on
           for convolutions.
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierUniform())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
556 557
        limit = np.sqrt(
            6.0 / ((param.shape[0] + param.shape[1]) * receptive_field_size))
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_xavier_uniform_initializer_dygraph(self):
        """Test xavier uniform initializer in dygraph model.
        """
        paddle.disable_static()

        weight_attr = paddle.framework.ParamAttr(
            name="linear_weight",
            initializer=paddle.nn.initializer.XavierUniform())
        linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)


class TestXavierNormal(unittest.TestCase):
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    def test_xavier_normal_initializer(self):
        """Test Xavier initializer with normal distribution on
           for matrix multiply.
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierNormal())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

        paddle.disable_static()

    def test_xavier_normal_initializer_conv(self):
        """Test Xavier initializer with normal distribution on
           for convolutions.
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierNormal())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
619 620
        std = np.sqrt(
            2.0 / ((param.shape[0] + param.shape[1]) * receptive_field_size))
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

        paddle.disable_static()

    def test_xavier_normal_initializer_dygraph(self):
        """Test xavier normal initializer in dygraph model.
        """
        paddle.disable_static()

        weight_attr = paddle.framework.ParamAttr(
            name="linear_weight",
            initializer=paddle.nn.initializer.XavierNormal())
        linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)


class TestAssign(unittest.TestCase):
639

640 641 642 643 644 645 646 647 648 649
    def test_assign_initializer(self, dtype="float32"):
        """Test the numpy array initializer with supplied arguments
        """
        paddle.enable_static()

        import numpy
        program = framework.Program()
        block = program.global_block()
        np_array = numpy.random.random((10000)).astype(dtype)
        for _ in range(2):
650 651 652 653 654
            block.create_parameter(dtype=np_array.dtype,
                                   shape=np_array.shape,
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.Assign(np_array))
655
        num_ops = 2 if dtype in ["float16", "uint16"] else 1
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        self.assertEqual(len(block.ops), num_ops)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')
        assert (init_op.attr('fp32_values') == np_array).all()

        paddle.disable_static()

        return block

    def test_assign_initializer_fp16(self):
        """Test the numpy array initializer with float16
        """
        block = self.test_assign_initializer("float16")
        self.assertTrue(block.ops[1])

671 672 673 674 675 676
    def test_assign_initializer_bf16(self):
        """Test the numpy array initializer with bfloat16
        """
        block = self.test_assign_initializer("uint16")  #bfloat16
        self.assertTrue(block.ops[1])

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    def test_assign_initializer_dygraph_1(self):
        """Test assign initializer in dygraph model.
        """
        paddle.disable_static()

        weight_attr_1 = paddle.framework.ParamAttr(
            name="linear_weight_1",
            initializer=paddle.nn.initializer.Assign(np.array([2, 2])))
        linear_1 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_1)

        self.assertTrue((linear_1.weight.numpy() == [2.0, 2.0]).all(), '')

    def test_assign_initializer_dygraph_2(self):
        """Test assign initializer in dygraph model.
        """
        paddle.disable_static()

        weight_attr_2 = paddle.framework.ParamAttr(
            name="linear_weight_2",
            initializer=paddle.nn.initializer.Assign([2, 2]))
        linear_2 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_2)

        self.assertTrue((linear_2.weight.numpy() == [2.0, 2.0]).all(), '')

    def test_assign_initializer_dygraph_3(self):
        """Test assign initializer in dygraph model.
        """
        paddle.disable_static()

        weight_attr_3 = paddle.framework.ParamAttr(
            name="linear_weight_3",
            initializer=paddle.nn.initializer.Assign(paddle.full([2], 2)))
        linear_3 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_3)

        self.assertTrue((linear_3.weight.numpy() == [2.0, 2.0]).all(), '')

713 714 715 716 717 718 719 720 721 722 723 724
    def test_assign_initializer_dygraph_4(self):
        """Test assign initializer in dygraph model.
        """
        paddle.disable_static()

        weight_attr_4 = paddle.framework.ParamAttr(
            name="linear_weight_4",
            initializer=paddle.nn.initializer.Assign((2, 2)))
        linear_4 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_4)

        self.assertTrue((linear_4.weight.numpy() == [2.0, 2.0]).all(), '')

725

726 727
if __name__ == '__main__':
    unittest.main()