reducer.cc 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/reducer.h"

namespace paddle {
namespace imperative {

#if defined(PADDLE_WITH_NCCL)
std::shared_ptr<Reducer> Reducer::s_instance_ = NULL;

Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
                 const std::vector<std::vector<size_t>> &group_indices,
                 const std::vector<bool> &is_sparse_gradient,
                 std::shared_ptr<imperative::ParallelContext> parallel_ctx)
    : vars_(vars),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
      parallel_ctx_(parallel_ctx) {
  VLOG(3) << "Start construct the Reducer ...";
  // initialize groups
  InitializeGroups(group_indices);

  {
    for (size_t group_index = 0; group_index < group_indices.size();
         ++group_index) {
      for (size_t var_index = 0; var_index < group_indices[group_index].size();
           ++var_index) {
        size_t global_var_index = group_indices[group_index][var_index];
        const auto variable_index = VariableIndex{
            .group_index = group_index, .inside_group_index = var_index,
        };
        VLOG(3) << "add hook for var[" << vars_[global_var_index]->GradVarName()
                << "], it's in group [" << group_index << "]";
        vars_[global_var_index]->SharedVar()->AddGradVarLeafBackwardHook(
            std::unique_ptr<LambdaGradAccumulatorPostHook>(
                new LambdaGradAccumulatorPostHook([=](VariableWrapper *grad) {
                  this->AddDistHook(grad, variable_index);
                })));
      }
    }
  }

  compute_stream_ = static_cast<platform::CUDADeviceContext *>(
                        platform::DeviceContextPool::Instance().Get(place_))
                        ->stream();
  comm_stream_ = platform::NCCLCommContext::Instance().Get(0, place_)->stream();
  events_.resize(group_indices.size());
  for (auto &event : events_) {
    event = platform::CudaEventResourcePool::Instance().New(
        BOOST_GET_CONST(platform::CUDAPlace, place_).device);
  }
  comm_enent_ = platform::CudaEventResourcePool::Instance().New(
      BOOST_GET_CONST(platform::CUDAPlace, place_).device);

  std::call_once(once_flag_, []() {
    std::atexit([]() { Reducer::GetInstance()->ReleaseReducer(); });
  });
}

void Reducer::ReleaseReducer() {
  for (auto &event : events_) {
    event.reset();
  }
  comm_enent_.reset();
}

int64_t Reducer::InitializeDenseGroups(
    const std::vector<size_t> &variable_indices_, Group *p_group) {
  int64_t all_length = 0;
  for (size_t index = 0; index < variable_indices_.size(); ++index) {
    const auto variable_index = variable_indices_[index];
    const auto &var = vars_[variable_index];
    const auto var_name = var->Name();
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[variable_index], false,
                      platform::errors::PreconditionNotMet(
                          "Tensor `%s`'s GRAD must be LoDTensor, but received "
                          "GRAD is SelectedRows",
                          var_name));

    auto lod_tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(lod_tensor->IsInitialized(), true,
                      platform::errors::PreconditionNotMet(
                          "Tensor `%s` is not initialized.", var_name));
    auto size = lod_tensor->numel();
    PADDLE_ENFORCE_GT(
        size, 0, platform::errors::PreconditionNotMet(
                     "The number of tensor `%s`'s elements is 0.", var_name));
    all_length += size;

    p_group->length_.push_back(size);
    // for concat operator
    p_group->dense_tensors_.push_back(framework::Tensor());

    // check the dtype and place, it must be same.
    auto dtype = var->DataType();
    auto place = var->Place();
    if (index > 0) {
      PADDLE_ENFORCE_EQ(
          dtype, p_group->dtype_,
          platform::errors::PreconditionNotMet(
              "Tensor %s has different dtype. Expected dtype is %s, but actual "
              "dtype is %s",
              var_name, framework::DataTypeToString(p_group->dtype_),
              framework::DataTypeToString(dtype)));
      PADDLE_ENFORCE_EQ(place, place_,
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different place. Expected place is "
                            "%s, but actual place is %s",
                            var_name, place_, place));
    } else {
      p_group->dtype_ = dtype;
      place_ = place;
    }
  }
  return all_length;
}

// Each parameter will be initialized according to the group information.
// For the sparse parameter, sparse_contents_ in the group directly points
// to the parameter. For dense parameters, first construct an empty Tensor().
// Then specify the actual memory in MarkVariableReady.
void Reducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";
  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &variable_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
        variable_indices_.size(), 0,
        platform::errors::PreconditionNotMet(
            "The number of group_index[`%d`]'s elements is 0.", group_index));
    Group group;
    group.variable_indices_ = variable_indices_;
    int64_t all_length = 0;

    // It's just for check the sparse or dense
    auto first_varbase = vars_[variable_indices_.front()];
    if (variable_indices_.size() == 1 &&
        is_sparse_gradient_[variable_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.sparse_contents_ = first_varbase->MutableGradVar();
      group.dtype_ = first_varbase->DataType();
      group.is_sparse_ = true;
    } else {
      // process the dense gradient.
      all_length = InitializeDenseGroups(variable_indices_, &group);
      // Alloc the continuous space
      auto tensor = group.dense_contents_.GetMutable<framework::LoDTensor>();
      tensor->Resize(framework::make_ddim({all_length}))
          .mutable_data(place_, group.dtype_);
    }
    // Debug Message For Reducer
    VLOG(3) << "the groups_[" << group_index << "] basic message:";
    VLOG(3) << "numul: " << all_length << " ;is_sparse: " << group.is_sparse_
            << " ;var number: " << group.variable_indices_.size();
    groups_.emplace_back(std::move(group));
  }
}

// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
void Reducer::PrepareForBackward() {
  VLOG(3) << "start reseting count..";
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](Group &group) {
    group.pending_ = group.variable_indices_.size();
  });
}

// Add hook function to each leaf node. When the gradient of a leaf node is
// generated, if it is the sparse parameter, it will directly execute allreduce,
// if it is the dense parameter, it will execute three steps: 1,
// MarkVariableReady. Find the position of the corresponding group
// through var_index, share the gradient memory and the group dense_tensors,
// the group counter is reduced by 1. 2, MarkGroupReady: When the group
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
void Reducer::AddDistHook(VariableWrapper *var_warpper,
                          const VariableIndex &var_index) {
  auto group_index = var_index.group_index;
  auto &group = groups_[group_index];

  if (!group.is_sparse_) {
    // Only dense_contents_ need memory copy
    MarkVariableReady(var_index, var_warpper);
  }
  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
}

void Reducer::MarkVariableReady(const VariableIndex &var_index,
                                VariableWrapper *var_warpper) {
  auto group_index = var_index.group_index;
  auto variable_index = var_index.inside_group_index;
  auto &group = groups_[group_index];
  auto length = group.length_[variable_index];

  auto tensor = var_warpper->MutableVar()->GetMutable<framework::LoDTensor>();
  group.dense_tensors_[variable_index].ShareDataWith(*tensor).Resize(
      {static_cast<int64_t>(length)});
}

void Reducer::MarkGroupReady(size_t group_index) {
  if (group_index > next_group_) {
228
    VLOG(3) << "Maybe it need adjust the order of group";
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    return;
  }

  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaEventRecord(events_[group_index].get(), compute_stream_));
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaStreamWaitEvent(comm_stream_, events_[group_index].get(), 0));

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    auto &group = groups_[next_group_];
    if (group.is_sparse_) {
      VLOG(3) << "sparse group [" << next_group_ << "] start allreduce...";
      parallel_ctx_->AllReduceByStream(*group.sparse_contents_,
                                       group.sparse_contents_, 0, false);
    } else {
      VLOG(3) << "dense group [" << next_group_ << "] start allreduce...";
      // Select common commstream to concat tensors
      // group.dense_tensors ---> group.dense_contents_
      group.ConcatTensors(*parallel_ctx_->GetDeviceContext(0));

      // Start allreduce
      parallel_ctx_->AllReduceByStream(group.dense_contents_,
                                       &(group.dense_contents_), 0, false);
      // Select common commstream to split tensors
      // group.dense_contents_ ---> group.dense_tensors
      group.SplitTensors(*parallel_ctx_->GetDeviceContext(0));
    }
  }
}

void Reducer::FinalizeBackward() {
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(comm_enent_.get(), comm_stream_));
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaStreamWaitEvent(compute_stream_, comm_enent_.get(), 0));
  VLOG(3) << "In the batch, Reducer is finished...";
}

// According to the size of each parameter, it is allocated to different groups.
// The sparse parameter occupies a group exclusively. The dense parameters of
// the same data type are assigned to the same group. When dividing groups, the
// size of each group will be limited according to each value in
// group_size_limits in turn. When it is not enough, it will be divided
// by the last value of group_size_limits. The limit value is 0, which
// means that the parameter will monopolize the group.
std::vector<std::vector<size_t>> AssignGroupBySize(
    const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
    const std::vector<bool> &is_sparse_gradient,
    const std::vector<size_t> &group_size_limits) {
  PADDLE_ENFORCE_EQ(vars.size(), is_sparse_gradient.size(),
                    platform::errors::PreconditionNotMet(
                        "vars len must be equal to is_sparse_gradient len, but "
                        "[%lu] != [%lu]",
                        vars.size(), is_sparse_gradient.size()));
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::unordered_map<std::string, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::unordered_map<std::string, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < vars.size(); ++i) {
    const auto &var = vars[i];
    if (is_sparse_gradient[i]) {
      // we keep sparse var a single group
      res.push_back({i});
      continue;
    }

    const auto &var_dtype = var->DataType();
    const auto var_dtype_str = framework::DataTypeToString(var_dtype);
    VLOG(3) << "var[" << var->GradVarName() << "] 's type is "
            << var->DataType();
    auto &group_info = next_group[var_dtype_str];
    int64_t var_size = -1;
    if (var->Var().IsType<framework::LoDTensor>()) {
      var_size = var->Var().Get<framework::LoDTensor>().numel();
    } else {
      VLOG(3) << "var " << var->Name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }
    group_info.first.push_back(i);
    group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype_str) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype_str] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype_str];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
        group_index.empty(), true,
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
  std::sort(res.begin(), res.end(),
            [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
              return x.front() < y.front();
            });
  return res;
}
#endif

}  // namespace imperative
}  // namespace paddle