node.py 28.9 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
"""Defination of Server and Worker."""
D
dongdaxiang 已提交
14

15
from . import ps_pb2 as pslib
D
dongdaxiang 已提交
16 17 18 19


class Server(object):
    """
20 21
        A Server basic class
        it's a base class, does not have implementation
D
dongdaxiang 已提交
22 23 24 25 26 27 28 29 30
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
31
        it's a base class, does not have implementation
D
dongdaxiang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
D
dongdaxiang 已提交
48 49 50 51 52 53
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
54

55
    def add_sparse_table(self, table_id, strategy):
D
dongdaxiang 已提交
56 57 58
        """
        Args:
            table_id(int): id of sparse params table
59
            strategy(dict): the config dict.
D
dongdaxiang 已提交
60 61 62
        Returns:
            return None 
        """
63

64 65 66 67 68 69 70
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_SPARSE_TABLE, table.type))
71 72
        if strategy is None:
            strategy = dict()
D
dongdaxiang 已提交
73
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
74 75
        table.table_id = table_id
        table.type = pslib.PS_SPARSE_TABLE
76 77 78 79 80

        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                    'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                    'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                    'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
81
                    'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
82
                    'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
83
                    'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
X
xujiaqi01 已提交
84 85 86 87 88 89
                    'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold', \
                    'embed_sparse_optimizer', 'embed_sparse_learning_rate', 'embed_sparse_weight_bounds', \
                    'embed_sparse_initial_range', 'embed_sparse_initial_g2sum', 'embed_sparse_beta1_decay_rate', \
                    'embed_sparse_beta2_decay_rate', 'embedx_sparse_optimizer', 'embedx_sparse_learning_rate', \
                    'embedx_sparse_weight_bounds', 'embedx_sparse_initial_range', 'embedx_sparse_initial_g2sum', \
                    'embedx_sparse_beta1_decay_rate', 'embedx_sparse_beta2_decay_rate']
90 91 92 93 94

        for key in strategy:
            if key not in support_sparse_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

95
        support_table_calss = ['DownpourSparseTable', 'DownpourSparseSSDTable']
96 97 98 99
        if strategy.get('sparse_table_class') is not None:
            table_class = strategy.get('sparse_table_class')
            if table_class not in support_table_calss:
                raise ValueError(
100
                    "support sparse_table_class: [ 'DownpourSparseTable', 'DownpourSparseSSDTable'], \
101 102 103 104 105 106
                        but actual %s" % (table_class))
        else:
            table_class = 'DownpourSparseTable'

        table.table_class = table_class

107
        if table_class == 'DownpourSparseTable' or table_class == 'DownpourSparseSSDTable':
108 109 110 111 112 113
            table.enable_sparse_table_cache = strategy.get(
                'sparse_enable_cache', True)
            table.sparse_table_cache_rate = strategy.get('sparse_cache_rate',
                                                         0.00055)
            table.sparse_table_cache_file_num = strategy.get(
                'sparse_cache_file_num', 16)
114 115 116
            table.compress_in_save = strategy.get('sparse_compress_in_save',
                                                  True)
            table.shard_num = strategy.get('sparse_shard_num', 1000)
117 118 119
            # DownpourFeatureValueAccessor: for ctr task, has cvm, embedding and sgd info
            # DownpourCtrAccessor         : for ctr task, has cvm, slot, embedding and sgd info
            # DownpourSparseValueAccessor : for general task, has embedding and sgd info
120
            # DownpourCtrDoubleAccessor   : for ctr task, which show clk are in double
X
xujiaqi01 已提交
121
            # DownpourUnitAccessor        : for ctr task, has cvm, slot, embedding and sgd info
122 123

            support_accessor_class = [
124
                'DownpourFeatureValueAccessor', 'DownpourCtrAccessor',
X
xujiaqi01 已提交
125 126
                'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor',
                'DownpourUnitAccessor'
127 128 129 130 131
            ]
            if strategy.get('sparse_accessor_class') is not None:
                accessor_class = strategy.get('sparse_accessor_class')
                if accessor_class not in support_accessor_class:
                    raise ValueError(
132 133
                        "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor', \
                        'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor'], \
134 135 136 137 138 139
                            but actual %s" % (accessor_class))
            else:
                accessor_class = 'DownpourCtrAccessor'

            table.accessor.accessor_class = accessor_class

X
xujiaqi01 已提交
140 141 142
            if accessor_class == 'DownpourFeatureValueAccessor' \
                    or accessor_class == 'DownpourCtrAccessor' \
                    or accessor_class == 'DownpourCtrDoubleAccessor':
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
                table.accessor.sparse_sgd_param.learning_rate = strategy.get(
                    'sparse_learning_rate', 0.05)
                table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
                    'sparse_initial_g2sum', 3)
                table.accessor.sparse_sgd_param.initial_range = strategy.get(
                    'sparse_initial_range', 1e-4)
                if strategy.get('sparse_weight_bounds') is None:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        [-10, 10])
                else:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        strategy.get('sparse_weight_bounds'))
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.embedx_threshold = strategy.get(
                    'sparse_embedx_threshold', 10)
                table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
                table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
                    'sparse_nonclk_coeff', 0.1)
                table.accessor.downpour_accessor_param.click_coeff = strategy.get(
                    'sparse_click_coeff', 1)
                table.accessor.downpour_accessor_param.base_threshold = strategy.get(
                    'sparse_base_threshold', 1.5)
                table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
                    'sparse_delta_threshold', 0.25)
                table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
                    'sparse_delta_keep_days', 16)
                table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
                    'sparse_delete_after_unseen_days', 30)
171 172
                table.accessor.downpour_accessor_param.ssd_unseenday_threshold = strategy.get(
                    'sparse_ssd_unseenday_threshold', 1)
173 174 175 176
                table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
                    'sparse_show_click_decay_rate', 0.98)
                table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
                    'sparse_delete_threshold', 0.8)
177 178 179 180
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
                table1.converter = converter
                table1.deconverter = deconverter

                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
                table2.converter = converter
                table2.deconverter = deconverter
            elif accessor_class == 'DownpourSparseValueAccessor':
                optimizer_name = strategy.get("sparse_optimizer", "adam")
                table.accessor.sparse_commonsgd_param.name = optimizer_name
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.fea_dim = int(table.accessor.embedx_dim)
                if optimizer_name == "naive":
                    table.accessor.sparse_commonsgd_param.naive.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.naive.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adagrad":
                    table.accessor.sparse_commonsgd_param.adagrad.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_g2sum = strategy.get(
                        'sparse_initial_g2sum', 3)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adam":
                    table.accessor.sparse_commonsgd_param.adam.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.001)
                    table.accessor.sparse_commonsgd_param.adam.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adam.beta1_decay_rate = strategy.get(
                        'sparse_beta1_decay_rate', 0.9)
                    table.accessor.sparse_commonsgd_param.adam.beta2_decay_rate = strategy.get(
                        'sparse_beta2_decay_rate', 0.999)
                    table.accessor.sparse_commonsgd_param.adam.ada_epsilon = strategy.get(
                        'sparse_ada_epsilon', 1e-8)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
244 245 246 247
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

248 249
                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
250 251 252
                table1.converter = converter
                table1.deconverter = deconverter

253 254
                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
255 256
                table2.converter = converter
                table2.deconverter = deconverter
X
xujiaqi01 已提交
257 258 259 260 261 262
            elif accessor_class == 'DownpourUnitAccessor':
                self.add_sparse_table_common_config(table, strategy)
                self.add_sparse_optimizer(table.accessor.embed_sgd_param,
                                          strategy, "embed_")
                self.add_sparse_optimizer(table.accessor.embedx_sgd_param,
                                          strategy, "embedx_")
263

264
    def add_dense_table(self, table_id, param_var, grad_var, strategy,
265
                        sparse_table_names):
D
dongdaxiang 已提交
266 267 268
        """
        Args:
            table_id(int): id of sparse params table
269 270 271 272
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the dense config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
273 274 275
        Returns:
            return None 
        """
276
        fea_dim = 0
277 278
        dense_param_vars = []
        for p in param_var:
279
            if p.name not in sparse_table_names:
280 281 282
                dense_param_vars.append(p)

        for param in dense_param_vars:
283 284 285 286 287 288 289 290 291 292
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
293 294 295

        if strategy is None:
            strategy = dict()
T
tangwei12 已提交
296
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
297
        table.table_id = table_id
298 299 300 301 302 303 304 305 306 307
        support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
                'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
                'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']

        for key in strategy:
            if key not in support_dense_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        table.table_class = strategy.get('dense_table_class',
                                         "DownpourDenseTable")
D
dongdaxiang 已提交
308
        table.type = pslib.PS_DENSE_TABLE
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        table.compress_in_save = strategy.get('dense_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'dense_accessor_class', "DownpourDenseValueAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
                                                           "adam")
        table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
            'dense_learning_rate', 5e-06)
        table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
            'dense_avg_decay', 0.999993)
        table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
            'dense_ada_decay', 0.9999)
        table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
            'dense_ada_epsilon', 1e-8)
        table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
            'dense_mom_decay', 0.99)
        table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
            'dense_naive_lr', 0.0002)
D
dongdaxiang 已提交
326 327
        table.accessor.fea_dim = fea_dim

328
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
329
                            strategy, sparse_table_names):
D
dongdaxiang 已提交
330 331
        """
        Args:
332
            table_id(int): id of datanorm table
333 334 335 336 337
            learning_rate(float): the learning rate used to update parameters
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the datanorm config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
338 339 340
        Returns:
            return None 
        """
341
        fea_dim = 0
342 343
        dense_param_vars = []
        for p in param_var:
344
            if p.name not in sparse_table_names:
345 346 347
                dense_param_vars.append(p)

        for param in dense_param_vars:
348 349 350 351 352 353 354 355 356 357
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
358 359 360 361 362 363 364 365 366 367
        if strategy is None:
            strategy = dict()

        support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save',\
                'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']

        for key in strategy:
            if key not in support_datanorm_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

D
dongdaxiang 已提交
368
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
369
        table.table_id = table_id
370
        table.table_class = strategy.get('datanorm_table_class',
371
                                         'DownpourDenseTable')
D
dongdaxiang 已提交
372
        table.type = pslib.PS_DENSE_TABLE
373 374
        table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
375
            'datanorm_accessor_class', 'DownpourDenseValueAccessor')
376
        table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
377
                                                           'summary')
378 379
        table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
            'datanorm_decay_rate', 0.999999)
D
dongdaxiang 已提交
380 381
        table.accessor.fea_dim = fea_dim

X
xujiaqi01 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    def add_sparse_optimizer(self, sgd, strategy, prefix):
        optimizer_name = strategy.get(prefix + "sparse_optimizer", "adam")
        sgd.name = optimizer_name
        if optimizer_name == "naive":
            sgd.naive.learning_rate = \
                strategy.get(prefix + 'sparse_learning_rate', 0.05)
            sgd.naive.initial_range = \
                strategy.get(prefix + 'sparse_initial_range', 1e-4)
            bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10])
            sgd.naive.weight_bounds.extend(bounds)
        elif optimizer_name == "adagrad":
            sgd.adagrad.learning_rate = \
                strategy.get(prefix + 'sparse_learning_rate', 0.05)
            sgd.adagrad.initial_range = \
                strategy.get(prefix + 'sparse_initial_range', 1e-4)
            sgd.adagrad.initial_g2sum = strategy.get(
                prefix + 'sparse_initial_g2sum', 3)
            bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10])
            sgd.adagrad.weight_bounds.extend(bounds)
        elif optimizer_name == "adam":
            sgd.adam.learning_rate = \
                strategy.get(prefix + 'sparse_learning_rate', 0.001)
            sgd.adam.initial_range = \
                strategy.get(prefix + 'sparse_initial_range', 1e-4)
            sgd.adam.beta1_decay_rate = strategy.get(
                prefix + 'sparse_beta1_decay_rate', 0.9)
            sgd.adam.beta2_decay_rate = strategy.get(
                prefix + 'sparse_beta2_decay_rate', 0.999)
            sgd.adam.ada_epsilon = strategy.get(prefix + 'sparse_ada_epsilon',
                                                1e-8)
            bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10])
            sgd.adam.weight_bounds.extend(bounds)

    def add_sparse_table_common_config(self, table, strategy):
        table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
        table.accessor.embedx_threshold = strategy.get(
            'sparse_embedx_threshold', 10)
        table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
        table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
            'sparse_nonclk_coeff', 0.1)
        table.accessor.downpour_accessor_param.click_coeff = strategy.get(
            'sparse_click_coeff', 1)
        table.accessor.downpour_accessor_param.base_threshold = strategy.get(
            'sparse_base_threshold', 1.5)
        table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
            'sparse_delta_threshold', 0.25)
        table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
            'sparse_delta_keep_days', 16)
        table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
            'sparse_delete_after_unseen_days', 30)
        table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
            'sparse_show_click_decay_rate', 0.98)
        table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
            'sparse_delete_threshold', 0.8)
        converter = strategy.get(
            'sparse_converter',
            "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
        deconverter = strategy.get(
            'sparse_deconverter',
            "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)")

        table1 = table.accessor.table_accessor_save_param.add()
        table1.param = 1
        table1.converter = converter
        table1.deconverter = deconverter

        table2 = table.accessor.table_accessor_save_param.add()
        table2.param = 2
        table2.converter = converter
        table2.deconverter = deconverter

D
dongdaxiang 已提交
453 454 455 456
    def get_desc(self):
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
457
        return self._server
D
dongdaxiang 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
472
        self._worker = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
473

474 475 476 477 478
    def add_sparse_table(self,
                         table_id,
                         slot_key_vars,
                         slot_value_vars,
                         slot_value_grads=None):
D
dongdaxiang 已提交
479 480 481
        """
        Args:
            table_id(int): id of sparse params table
482 483 484 485
            slot_key_vars(list): slot key id
            slot_value_vars(list): slot key value after embedding
            slot_value_grads(list): grad of all params, default is None

D
dongdaxiang 已提交
486 487 488
        Returns:
            return None 
        """
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        if slot_value_grads is None:
            slot_value_grad_names = \
                [var.name + "@GRAD" for var in slot_value_vars]
        else:
            value_to_key = {}
            for i in range(len(slot_key_vars)):
                value_to_key[slot_value_vars[i].name] = slot_key_vars[i]
            slot_value_grad_names = []
            all_grad_names = [var.name for var in slot_value_grads]
            for var in slot_value_vars:
                if var.name + "@GRAD" in all_grad_names:
                    slot_value_grad_names.append(var.name + "@GRAD")
            sorted_slot_value_vars = [i for i in slot_value_vars if \
                i.name + "@GRAD" in slot_value_grad_names]
            sorted_slot_value_vars += [i for i in slot_value_vars if \
                i.name + "@GRAD" not in slot_value_grad_names]
            sorted_slot_key_vars = \
                [value_to_key[v.name] for v in sorted_slot_value_vars]

        target_table = None
509 510
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
X
xujiaqi01 已提交
511
                keys = table.slot_key
512 513 514 515
                key_names = [var.name for var in sorted_slot_key_vars]
                for key_name in key_names:
                    if key_name not in keys:
                        raise ValueError("sparse table %s slot_key error" %
516
                                         table_id)
517 518
                target_table = table
                break
519

520 521 522
        table = target_table
        if table is not None:
            self._worker.sparse_table.remove(table)
T
tangwei12 已提交
523
        table = self._worker.sparse_table.add()
D
dongdaxiang 已提交
524
        table.table_id = table_id
525 526 527
        table.slot_key.extend([var.name for var in sorted_slot_key_vars])
        table.slot_value.extend([var.name for var in sorted_slot_value_vars])
        table.slot_gradient.extend(slot_value_grad_names)
D
dongdaxiang 已提交
528

529
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
530
                        dense_start_table_id, sparse_table_names):
D
dongdaxiang 已提交
531 532 533 534 535
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
536 537 538 539
            param_vars(list): all dense param. it is a list.
            grad_vars(list): all dense grad parm it is a list.
            dense_start_table_id(int): dense table start index
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
540 541 542
        Returns:
            return None 
        """
543
        sparse_table_name_grad = []
544
        for name in sparse_table_names:
545 546 547 548
            sparse_table_name_grad.append(name + "@GRAD")

        dense_param_name = []
        for p in param_vars:
549
            if p.name not in sparse_table_names:
550 551 552 553 554 555 556 557 558
                dense_param_name.append(p.name)

        dense_grad_name = []
        for g in grad_vars:
            if g.name not in sparse_table_name_grad:
                dense_grad_name.append(g.name)

        dense_param_name.sort()
        dense_grad_name.sort()
559

560 561
        for table in self._worker.dense_table:
            if table.table_id == table_id:
562
                desc_dense_param_name = list(table.dense_variable_name)
563 564 565
                desc_dense_param_name.sort()

                if dense_param_name == desc_dense_param_name:
566 567
                    desc_dense_grad_name = list(
                        table.dense_gradient_variable_name)
568 569
                    desc_dense_grad_name.sort()
                    if dense_grad_name == desc_dense_grad_name:
570 571 572
                        return
                    else:
                        raise ValueError(
573 574
                            "dense table %s dense_gradient_variable_name "
                            "error" % table_id)
575 576 577 578
                else:
                    raise ValueError(
                        "dense table %s dense_variable_name error" % table_id)

D
dongdaxiang 已提交
579
        table = self._worker.dense_table.add()
D
dongdaxiang 已提交
580
        table.table_id = table_id
581

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
        #def cmp_fc(x, y):
        #    if x.startswith("fc_") and y.startswith("fc_"):
        #        index_x = x.find('.')
        #        index_y = y.find('.')
        #        if index_x > 0 and index_y > 0:
        #            num_x = x[3:index_x]
        #            num_y = y[3:index_y]
        #            if num_x.isdigit() and num_y.isdigit():
        #                if int(num_x) < int(num_y):
        #                    return -1
        #                if int(num_x) > int(num_y):
        #                    return 1
        #                if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
        #                    return -1
        #                if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
        #                    return 1
        #    if x < y:
        #        return -1
        #    else:
        #        return 1

        #table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
        #table.dense_gradient_variable_name.extend(
        #    sorted(dense_grad_name, cmp_fc))
        table.dense_variable_name.extend(dense_param_name)
        table.dense_gradient_variable_name.extend(dense_grad_name)
D
dongdaxiang 已提交
608 609 610 611 612

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
613
        return self._worker