test_image_classification.py 10.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import math
武毅 已提交
17
import os
18
import sys
19
import tempfile
20 21 22 23 24 25
import unittest

import numpy

import paddle
import paddle.fluid as fluid
Q
Qiao Longfei 已提交
26

P
pangyoki 已提交
27 28
paddle.enable_static()

Q
Qiao Longfei 已提交
29

30
def resnet_cifar10(input, depth=32):
31 32 33
    def conv_bn_layer(
        input, ch_out, filter_size, stride, padding, act='relu', bias_attr=False
    ):
34
        tmp = paddle.static.nn.conv2d(
35 36 37 38 39 40 41 42
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=bias_attr,
        )
43
        return paddle.static.nn.batch_norm(input=tmp, act=act)
Q
Qiao Longfei 已提交
44

45
    def shortcut(input, ch_in, ch_out, stride):
Q
Qiao Longfei 已提交
46
        if ch_in != ch_out:
47
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
Q
Qiao Longfei 已提交
48 49 50
        else:
            return input

Q
Qiao Longfei 已提交
51 52
    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
53
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
54
        short = shortcut(input, ch_in, ch_out, stride)
55
        return paddle.nn.functional.relu(paddle.add(x=tmp, y=short))
Q
Qiao Longfei 已提交
56

57 58
    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
Q
Qiao Longfei 已提交
59
        for i in range(1, count):
60
            tmp = block_func(tmp, ch_out, ch_out, 1)
Q
Qiao Longfei 已提交
61 62 63
        return tmp

    assert (depth - 2) % 6 == 0
M
minqiyang 已提交
64
    n = (depth - 2) // 6
65 66 67
    conv1 = conv_bn_layer(
        input=input, ch_out=16, filter_size=3, stride=1, padding=1
    )
Q
Qiao Longfei 已提交
68 69 70
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
C
ccrrong 已提交
71
    pool = paddle.nn.functional.avg_pool2d(x=res3, kernel_size=8, stride=1)
Q
Qiao Longfei 已提交
72 73 74
    return pool


75
def vgg16_bn_drop(input):
Q
Qiao Longfei 已提交
76
    def conv_block(input, num_filter, groups, dropouts):
77 78 79 80 81 82 83 84 85 86 87
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max',
        )
Q
Qiao Longfei 已提交
88

89 90 91 92 93
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
94

C
ccrrong 已提交
95
    drop = paddle.nn.functional.dropout(x=conv5, p=0.5)
96
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
97
    bn = paddle.static.nn.batch_norm(input=fc1, act='relu')
C
ccrrong 已提交
98
    drop2 = paddle.nn.functional.dropout(x=bn, p=0.5)
99
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
Q
Qiao Longfei 已提交
100 101 102
    return fc2


武毅 已提交
103
def train(net_type, use_cuda, save_dirname, is_local):
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    classdim = 10
    data_shape = [3, 32, 32]

    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if net_type == "vgg":
        print("train vgg net")
        net = vgg16_bn_drop(images)
    elif net_type == "resnet":
        print("train resnet")
        net = resnet_cifar10(images, 32)
    else:
        raise ValueError("%s network is not supported" % net_type)

    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
120 121 122
    cost = paddle.nn.functional.cross_entropy(
        input=predict, label=label, reduction='none', use_softmax=False
    )
123
    avg_cost = paddle.mean(cost)
124
    acc = paddle.static.accuracy(input=predict, label=label)
125

126
    # Test program
127
    test_program = fluid.default_main_program().clone(for_test=True)
128 129

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
130
    optimizer.minimize(avg_cost)
131 132 133 134

    BATCH_SIZE = 128
    PASS_NUM = 1

135 136 137 138 139 140
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10(), buf_size=128 * 10
        ),
        batch_size=BATCH_SIZE,
    )
141

142 143 144
    test_reader = paddle.batch(
        paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE
    )
145

146 147 148
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
武毅 已提交
149 150 151 152 153 154 155 156 157 158 159 160

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        loss = 0.0
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                exe.run(main_program, feed=feeder.feed(data))

                if (batch_id % 10) == 0:
                    acc_list = []
                    avg_loss_list = []
                    for tid, test_data in enumerate(test_reader()):
161 162 163 164 165
                        loss_t, acc_t = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[avg_cost, acc],
                        )
武毅 已提交
166 167 168 169 170 171 172 173 174
                        if math.isnan(float(loss_t)):
                            sys.exit("got NaN loss, training failed.")
                        acc_list.append(float(acc_t))
                        avg_loss_list.append(float(loss_t))
                        break  # Use 1 segment for speeding up CI

                    acc_value = numpy.array(acc_list).mean()
                    avg_loss_value = numpy.array(avg_loss_list).mean()

175
                    print(
176 177 178 179 180 181 182
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.format(
                            pass_id,
                            batch_id + 1,
                            float(avg_loss_value),
                            float(acc_value),
                        )
                    )
武毅 已提交
183 184

                    if acc_value > 0.01:  # Low threshold for speeding up CI
185 186 187
                        fluid.io.save_inference_model(
                            save_dirname, ["pixel"], [predict], exe
                        )
武毅 已提交
188 189 190 191 192
                        return

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
193 194
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
195 196 197 198
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
199
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
200
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
201 202
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
203
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
204
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
205 206
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
207 208 209
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
210 211 212 213
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
214 215 216 217 218 219 220 221 222


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

223 224 225
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
226
        # the feed_target_names (the names of variables that will be fed
227 228
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
229 230 231 232 233
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(save_dirname, exe)
234 235 236 237 238 239 240 241

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
242 243 244 245 246
        results = exe.run(
            inference_program,
            feed={feed_target_names[0]: tensor_img},
            fetch_list=fetch_targets,
        )
247

248
        print("infer results: ", results[0])
249

250 251 252 253 254 255 256
        fluid.io.save_inference_model(
            save_dirname,
            feed_target_names,
            fetch_targets,
            exe,
            inference_program,
        )
257

258

武毅 已提交
259
def main(net_type, use_cuda, is_local=True):
260 261 262 263
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
264 265
    temp_dir = tempfile.TemporaryDirectory()
    save_dirname = os.path.join(
266 267
        temp_dir.name, "image_classification_" + net_type + ".inference.model"
    )
268

武毅 已提交
269
    train(net_type, use_cuda, save_dirname, is_local)
270
    infer(use_cuda, save_dirname)
271
    temp_dir.cleanup()
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302


class TestImageClassification(unittest.TestCase):
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    def test_vgg_cpu(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=False)

    def test_resnet_cpu(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()