gelu_grad_kernel.cc 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/gelu_grad_kernel.h"

#include <algorithm>
#include <cmath>

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/blas/blas_impl.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/gelu_kernel.h"

namespace phi {

template <typename T>
struct GeluGradFunctor {
  template <typename Device, typename X, typename dOut, typename dX>
  void operator()(Device d, X x, dOut dout, dX dx, bool approximate) const {
    if (approximate) {
      if (std::is_same<T, dtype::float16>::value) {
        VLOG(4) << "cast from float16 to float before computing";
        auto casted_x = x.template cast<float>();
        auto casted_dout = dout.template cast<float>();

        const float kAlpha = static_cast<float>(M_2_SQRTPI * M_SQRT1_2);
        const float kBeta =
            kAlpha * static_cast<float>(GELU_CONSTANT) * static_cast<float>(3);
        const auto y =
            (kAlpha *
             ((static_cast<float>(GELU_CONSTANT) * casted_x.cube()) + casted_x))
                .tanh();
        dx.device(d) = (static_cast<float>(0.5) * casted_dout *
                        (static_cast<float>(1) + y +
                         (casted_x - casted_x * y.square()) *
                             (kAlpha + kBeta * casted_x.square())))
                           .template cast<T>();
      } else {
        const T kAlpha = static_cast<T>(M_2_SQRTPI * M_SQRT1_2);
        const T kBeta =
            kAlpha * static_cast<T>(GELU_CONSTANT) * static_cast<T>(3);
        const auto y =
            (kAlpha * ((static_cast<T>(GELU_CONSTANT) * x.cube()) + x)).tanh();
        dx.device(d) = static_cast<T>(0.5) * dout *
                       (static_cast<T>(1) + y +
                        (x - x * y.square()) * (kAlpha + kBeta * x.square()));
      }
    } else {
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__) && !defined(PADDLE_WITH_CUDA) &&                       \
    !defined(PADDLE_WITH_HIP)
      auto x_data = x.data();
      auto dx_data = dx.data();
      auto dout_data = dout.data();
      int n = std::min(x.size(), dx.size());

      auto first = static_cast<T*>(std::malloc(n * sizeof(T)));
      std::memset(first, 0, n * sizeof(T));
      auto second = static_cast<T*>(std::malloc(n * sizeof(T)));
      std::memset(second, 0, n * sizeof(T));

      // first = (0.5 * (1 + erf(x / sqrt(2))))
      phi::funcs::CBlas<T>::AXPY(
          n, static_cast<T>(M_SQRT1_2), x_data, 1, first, 1);
      phi::funcs::CBlas<T>::VMERF(n, first, first, VML_LA);
      for (int i = 0; i < n; i++) {
        first[i] += static_cast<T>(1);
      }
      phi::funcs::CBlas<T>::SCAL(n, static_cast<T>(0.5), first, 1);

      // second = (0.5 * 2/sqrt(pi) * 1/sqrt(2) * x * exp(-0.5 * x^2))
      phi::funcs::CBlas<T>::VSQUARE(n, x_data, second);
      phi::funcs::CBlas<T>::SCAL(n, -static_cast<T>(0.5), second, 1);
      phi::funcs::CBlas<T>::VEXP(n, second, second);
      phi::funcs::CBlas<T>::VMUL(n, x_data, second, second);
      phi::funcs::CBlas<T>::SCAL(
          n, static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2), second, 1);

      // dx = dout * (first + second);
      phi::funcs::CBlas<T>::VADD(n, first, second, first);
      phi::funcs::CBlas<T>::VMUL(n, dout_data, first, dx_data);

      std::free(first);
      std::free(second);
#else
      // gelu_grad(x) = dout * 0.5 * (1 + erf(x / sqrt(2)) + x * sqrt(2 / pi) *
      // exp(- x^2 / 2)
      if (std::is_same<T, dtype::float16>::value) {
        VLOG(4) << "cast from float16 to float before computing";
        auto casted_x = x.template cast<float>();
        auto casted_dout = dout.template cast<float>();
        auto first = static_cast<float>(0.5) *
                     (static_cast<float>(1) +
                      ((casted_x * static_cast<float>(M_SQRT1_2)).erf()));
        auto second = static_cast<float>(0.5 * M_2_SQRTPI * M_SQRT1_2) *
                      casted_x *
                      (-static_cast<float>(0.5) * casted_x.square()).exp();
        dx.device(d) = (casted_dout * (first + second)).template cast<T>();
      } else {
        auto first =
            static_cast<T>(0.5) *
            (static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));

        auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
                      (-static_cast<T>(0.5) * x.square()).exp();
        dx.device(d) = dout * (first + second);
      }
#endif
    }
  }
};

template <typename T, typename Context>
void GeluGradKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& out_grad,
                    bool approximate,
                    DenseTensor* x_grad) {
  dev_ctx.template Alloc<T>(x_grad);
  auto eigen_x = EigenVector<T>::Flatten(x);
  auto eigen_out_grad = EigenVector<T>::Flatten(out_grad);
  auto eigen_x_grad = EigenVector<T>::Flatten(*x_grad);
  auto& dev = *dev_ctx.eigen_device();

  GeluGradFunctor<T> functor;
  functor(dev, eigen_x, eigen_out_grad, eigen_x_grad, approximate);
}

}  // namespace phi

PD_REGISTER_KERNEL(
    gelu_grad, CPU, ALL_LAYOUT, phi::GeluGradKernel, float, double) {}