test_collective_api_base.py 19.4 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
import unittest
import time
import argparse
import os
import sys
import subprocess
import traceback
import functools
import pickle
from contextlib import closing
27
import paddle
28 29 30 31 32 33
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core


class TestCollectiveAPIRunnerBase(object):
L
lilong12 已提交
34
    def get_model(self, train_prog, startup_prog, rank, indata=None):
35 36 37 38 39 40 41 42 43 44
        raise NotImplementedError(
            "get model should be implemented by child class.")

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
45
        paddle.distributed.init_parallel_env()
46 47 48 49
        if args['backend'] == 'nccl':
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(
                device_id)  #if args.use_gpu else fluid.CPUPlace()
50 51 52
        elif args['backend'] == 'bkcl':
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
53 54 55
        else:
            place = fluid.CPUPlace()
        np.random.seed(os.getpid())
56
        indata = np.random.random((10, 1000)).astype("float32")
L
lilong12 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69
        if args['static_mode']:
            result = self.get_model(train_prog, startup_prog, rank)
            exe = fluid.Executor(place)
            exe.run(startup_prog)
            fetch_list = []
            for elem in result:
                fetch_list.append(elem.name)
            out = exe.run(train_prog,
                          feed={'tindata': indata},
                          fetch_list=fetch_list)
        else:
            out = self.get_model(train_prog, startup_prog, rank, indata)
            #print(out, sys.stderr)
T
tianshuo78520a 已提交
70
        sys.stdout.buffer.write(pickle.dumps(out))
71 72 73 74 75 76 77 78 79 80 81 82


def runtime_main(test_class, col_type):
    args = {}
    model = test_class()
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    args["backend"] = os.getenv("BACKEND")
    args["path_id"] = int(os.getenv("PATH_ID"))
L
lilong12 已提交
83
    args["static_mode"] = int(os.getenv("STATIC_MODE"))
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    model.run_trainer(args)


import paddle.compat as cpt
import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
        self._python_interp = sys.executable

    def _find_free_port(self):
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
        #print("w0_ep:",w0_ep," w1_ep:",w1_ep)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        if core.is_compiled_with_cuda():
            env0 = {
                "FLAGS_selected_gpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_gpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
        elif core.is_compiled_with_xpu():
            env0 = {
                "FLAGS_selected_xpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_xpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
149 150 151
        #update environment
        env0.update(envs)
        env1.update(envs)
152 153 154 155
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd = "%s -m coverage run --branch -p %s"
        else:
            tr_cmd = "%s %s"
156 157
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
L
lilong12 已提交
158 159
        tr0_pipe = open("/tmp/tr0_err_%d.log" % os.getpid(), "w")
        tr1_pipe = open("/tmp/tr1_err_%d.log" % os.getpid(), "w")
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        #print(tr0_cmd) 
        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=env0)

        tr1_proc = subprocess.Popen(
            tr0_cmd.strip().split(),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=env1)

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
L
lilong12 已提交
180
        with open("/tmp/tr0_err_%d.log" % os.getpid(), "r") as f:
181
            sys.stderr.write('trainer 0 stderr file: %s\n' % f.read())
L
lilong12 已提交
182
        with open("/tmp/tr1_err_%d.log" % os.getpid(), "r") as f:
183
            sys.stderr.write('trainer 1 stderr file: %s\n' % f.read())
184 185 186 187 188 189 190 191
        return pickle.loads(tr0_out), pickle.loads(
            tr1_out), tr0_proc.pid, tr1_proc.pid

    def check_with_place(self,
                         model_file,
                         col_type,
                         backend="nccl",
                         path_id="0",
L
lilong12 已提交
192
                         static_mode="1",
193
                         check_error_log=False,
194 195
                         need_envs={},
                         eager_mode=True):
196 197 198 199
        if backend == "nccl" or backend == "bkcl":
            with_gloo = '0'
        else:
            with_gloo = '1'
200 201 202 203 204 205 206
        required_envs = {
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_eager_delete_tensor_gb": "0.0",
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "LD_PRELOAD": os.getenv("LD_PRELOAD", ""),
L
lilong12 已提交
207 208
            "FLAGS_call_stack_level": "2",
            "GLOG_v": "3",
209
            "NCCL_P2P_DISABLE": "1",
L
lilong12 已提交
210
            "STATIC_MODE": static_mode,
L
lilong12 已提交
211
            "PADDLE_WITH_GLOO": with_gloo,
212 213 214 215 216 217 218
            "BACKEND": backend,
            "PATH_ID": path_id
        }
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
219
            required_envs["GLOO_LOG_LEVEL"] = "TRACE"
220 221 222

        if eager_mode:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 1
223 224
        else:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 0
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(model_file,
                                                         required_envs)
        np.random.seed(pid0)
        input1 = np.random.random((10, 1000))
        np.random.seed(pid1)
        input2 = np.random.random((10, 1000))
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
            tr_out0 = np.vstack((tr0_out[0], tr0_out[1]))
            tr_out1 = np.vstack((tr1_out[0], tr1_out[1]))
            self.assertTrue(np.allclose(tr_out0, need_result))
            self.assertTrue(np.allclose(tr_out1, need_result))
        elif col_type == "broadcast":
            need_result = input2
            self.assertTrue(np.allclose(tr0_out, need_result))
            self.assertTrue(np.allclose(tr1_out, need_result))
        elif col_type == "reduce":
            need_result = input1 + input2
            self.assertTrue(np.allclose(tr0_out, need_result))
        elif col_type == "scatter":
            need_result = input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
            self.assertTrue(np.allclose(tr0_out, need_result1))
            self.assertTrue(np.allclose(tr1_out, need_result2))
        elif col_type == "allreduce":
            need_result = input1 + input2
            self.assertTrue(
                np.allclose(
                    tr0_out, need_result, rtol=1e-05, atol=1e-05))
            self.assertTrue(
                np.allclose(
                    tr1_out, need_result, rtol=1e-05, atol=1e-05))
259 260 261
        elif col_type == "parallel_embedding":
            result_data = tr0_out[0]
            np.random.seed(2020)
262
            need_result = np.random.rand(12, 8)
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            for i in range(result_data.shape[0]):
                for j in range(result_data.shape[1]):
                    data = result_data[i][j]
                    assert np.allclose(
                        tr0_out[1][i][j], need_result[data], atol=1e-08)
        elif col_type == "row_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
            self.assertTrue(
                np.allclose(
                    result_data, need_result, rtol=1e-05, atol=1e-05))
        elif col_type == "column_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
            self.assertTrue(
                np.allclose(
                    result_data, need_result, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296
        elif col_type == "alltoall":
            need_result1 = np.vstack((input1[0:input1.shape[0] // 2, :],
                                      input2[0:input2.shape[0] // 2, :]))
            need_result2 = np.vstack((input1[input1.shape[0] // 2:, :],
                                      input2[input2.shape[0] // 2:, :]))
            tr0_out = np.vstack(tr0_out)
            tr1_out = np.vstack(tr1_out)
            self.assertTrue(
                np.allclose(
                    tr0_out, need_result1, rtol=1e-05, atol=1e-05))
            self.assertTrue(
                np.allclose(
                    tr1_out, need_result2, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
297 298 299 300 301
        elif col_type == "sendrecv":
            result_data = tr1_out[0]
            self.assertTrue(
                np.allclose(
                    input1, result_data, rtol=1e-05, atol=1e-05))
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
        elif col_type == "global_gather":
            in_feat = 2
            n_expert = 2
            world_size = 2
            tot_expert = n_expert * world_size

            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr1 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, tot_expert):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]

            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr2 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, tot_expert):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            global_expert_count1 = np.zeros(tot_expert).astype("int")
            global_expert_count2 = np.zeros(tot_expert).astype("int")
            global_expert_count1[0:n_expert] = local_expert_count1[0:n_expert]
            global_expert_count1[n_expert:] = local_expert_count2[0:n_expert]
            global_expert_count2[0:n_expert] = local_expert_count1[n_expert:]
            global_expert_count2[n_expert:] = local_expert_count2[n_expert:]

            np.random.seed(pid0)
            fwd_expert_count = sum(global_expert_count1).astype("int")
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            np.random.seed(pid1)
            fwd_expert_count = sum(global_expert_count2).astype("int")
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            output1 = [[], [], [], []]
            output2 = [[], [], [], []]
            send_ptr1 = 0
            send_ptr2 = 0

            for i in range(n_expert):
                for j in range(world_size):
                    idx = j * n_expert + i
                    if j == 0:
                        output1_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx], :]
                        output1_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx], :]
                        output1[i].extend(output1_part1)
                        output1[i + n_expert].extend(output1_part2)
                    else:
                        output2_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx]]
                        output2_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx]]
                        output2[i].extend(output2_part1)
                        output2[i + n_expert].extend(output2_part2)
                    send_ptr1 = send_ptr1 + global_expert_count1[idx]
                    send_ptr2 = send_ptr2 + global_expert_count2[idx]
            result1 = []
            result2 = []
            for i in range(tot_expert):
                for arr in output1[i]:
                    if arr == []:
                        continue
                    result1.append(arr)
            for i in range(tot_expert):
                for arr in output2[i]:
                    if arr == []:
                        continue
                    result2.append(arr)
            if result1 == []:
                output1 = np.array([])
            else:
                output1 = np.concatenate(
                    result1, axis=0).reshape(
                        sum(local_expert_count1), in_feat)
            if result2 == []:
                output2 = np.array([])
            else:
                output2 = np.concatenate(
                    result2, axis=0).reshape(
                        sum(local_expert_count2), in_feat)

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

            self.assertTrue(
                np.allclose(
                    tr0_out[0], output1, rtol=1e-05, atol=1e-05))
            self.assertTrue(
                np.allclose(
                    tr1_out[0], output2, rtol=1e-05, atol=1e-05))
            if static_mode == 0:
                self.assertTrue(
                    np.allclose(
                        tr0_out[1],
                        2 * local_input_buf1,
                        rtol=1e-05,
                        atol=1e-05))
                self.assertTrue(
                    np.allclose(
                        tr1_out[1],
                        2 * local_input_buf2,
                        rtol=1e-05,
                        atol=1e-05))

        elif col_type == "global_scatter":
            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count1)
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr1 = np.ones(4, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, 4):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]
            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count2)
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr2 = np.ones(4, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, 4):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            output1 = []
            output2 = []
            for i in range(2):
                for j in range(2):
                    idx = j * 2 + i
                    if j == 0:
                        # send data to 0 card
                        output1.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output1.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
                    else:
                        output2.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output2.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
            if output1 == []:
                output1 = np.array([])
            else:
                output1 = np.concatenate(output1)
            if output2 == []:
                output2 = np.array([])
            else:
                output2 = np.concatenate(output2)

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

            self.assertTrue(
                np.allclose(
                    tr0_out[0], output1, rtol=1e-05, atol=1e-05))
            self.assertTrue(
                np.allclose(
                    tr1_out[0], output2, rtol=1e-05, atol=1e-05))
            if static_mode == 0:
                self.assertTrue(
                    np.allclose(
                        tr0_out[1],
                        2 * local_input_buf1,
                        rtol=1e-05,
                        atol=1e-05))
                self.assertTrue(
                    np.allclose(
                        tr1_out[1],
                        2 * local_input_buf2,
                        rtol=1e-05,
                        atol=1e-05))
484 485
        else:
            pass