collective_global_gather.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import os
import sys
import paddle
import paddle.fluid as fluid
import unittest
import paddle.fluid.layers as layers
from test_collective_api_base import TestCollectiveAPIRunnerBase, runtime_main
import pickle
26
from paddle.fluid.framework import _enable_legacy_dygraph
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

paddle.enable_static()


class TestCollectiveGlobalGatherAPI(TestCollectiveAPIRunnerBase):
    def __init__(self):
        self.global_ring_id = 0

    def get_model(self, main_prog, startup_program, rank, indata=None):
        with fluid.program_guard(main_prog, startup_program):
            seed = os.getpid()
            np.random.seed(seed)
            in_feat = 2
            n_expert = 2
            world_size = 2
            tot_expert = n_expert * world_size
            local_input_buf = paddle.static.data(
                name="local_input_buf", shape=[-1, in_feat], dtype="float32")
            local_expert_count = paddle.static.data(
                name="local_expert_count", shape=[tot_expert], dtype="int64")
            global_expert_count = paddle.static.data(
                name="global_expert_count", shape=[tot_expert], dtype="int64")

            output = paddle.distributed.utils.global_gather(
                local_input_buf, local_expert_count, global_expert_count)

            return [output]

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
        paddle.distributed.init_parallel_env()
        if args['backend'] == 'nccl':
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(
                device_id)  #if args.use_gpu else fluid.CPUPlace()
        elif args['backend'] == 'bkcl':
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            place = fluid.CPUPlace()

        in_feat = 2
        n_expert = 2
        world_size = 2
        tot_expert = n_expert * world_size
        paddle.disable_static()
78 79 80

        # Call paddle.distributed.alltoall() under legacy dygraph
        _enable_legacy_dygraph()
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        np.random.seed(os.getpid())
        local_expert_count = np.random.randint(
            1, 4, size=tot_expert).astype("int64")
        local_expert_count = paddle.to_tensor(local_expert_count)
        global_expert_count = []
        paddle.distributed.alltoall(
            paddle.split(
                local_expert_count, 2, axis=0), global_expert_count)
        global_expert_count = paddle.concat(global_expert_count, axis=0)
        global_expert_count = global_expert_count.numpy()
        local_expert_count = local_expert_count.numpy()
        fwd_expert_count = sum(global_expert_count)
        np.random.seed(os.getpid())
        local_input_buf = np.random.rand(fwd_expert_count,
                                         in_feat).astype("float32")

        paddle.enable_static()
        if args['static_mode']:
            result = self.get_model(train_prog, startup_prog, rank)
            exe = fluid.Executor(place)
            exe.run(startup_prog)
            fetch_list = []
            for elem in result:
                fetch_list.append(elem.name)
            out = exe.run(train_prog,
                          feed={
                              'local_expert_count': local_expert_count,
                              'global_expert_count': global_expert_count,
                              'local_input_buf': local_input_buf
                          },
                          fetch_list=fetch_list)

        sys.stdout.buffer.write(pickle.dumps(out))


if __name__ == "__main__":
    runtime_main(TestCollectiveGlobalGatherAPI, "global_gather")