dense.h 5.3 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gflags/gflags.h>
#include <math.h>  // for sqrt in CPU and CUDA
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "paddle/fluid/distributed/common/utils.h"

namespace paddle {
namespace distributed {

// dense optimzier
// TODO(tangwei12) integrate with sparse optimzer later.
class DenseOptimizer {
 public:
  DenseOptimizer() {}
  explicit DenseOptimizer(const CommonAccessorParameter& accessor,
                          std::vector<std::vector<float>>* values) {}
  virtual void update(const float* update_values, size_t num, int begin,
                      int end) = 0;
};

// sum calc for dense tensor
class DSUM : public DenseOptimizer {
 public:
  explicit DSUM(const CommonAccessorParameter& accessor,
                std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
    }
  }

  void update(const float* update_values, size_t num, int begin,
              int end) override {
    auto update_numel = end - begin;
    GetBlas<float>().VADD(update_numel, update_values + begin, param + begin,
                          param + begin);
  }

  float* param;
};

// sgd optimizer for dense tensor
class DSGD : public DenseOptimizer {
 public:
  explicit DSGD(const CommonAccessorParameter& accessor,
                std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
      }
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
    }
  }

  void update(const float* update_values, size_t num, int begin,
              int end) override {
    auto update_numel = end - begin;
    std::vector<float> grads;
    grads.resize(update_numel);

    auto blas = GetBlas<float>();
    blas.VCOPY(update_numel, update_values + begin, grads.data());
    blas.SCAL(update_numel, *learning_rate, grads.data());
    blas.VSUB(update_numel, param + begin, grads.data(), param + begin);
  }

  float* learning_rate;
  float* param;
};

// adam optimizer for dense tensor
class DAdam : public DenseOptimizer {
 public:
  explicit DAdam(const CommonAccessorParameter& accessor,
                 std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
      }
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
      if (names[x] == "Moment1") {
        moment1 = (*values)[x].data();
      }
      if (names[x] == "Moment2") {
        moment2 = (*values)[x].data();
      }
      if (names[x] == "Beta1Pow") {
        beta1_pow = (*values)[x].data();
      }
      if (names[x] == "Beta2Pow") {
        beta2_pow = (*values)[x].data();
      }
    }

    // add attr later
    beta1 = 0.9;
    beta2 = 0.999;
    epsilon = 1.0e-8;
  }

  void update(const float* update_values, size_t num, int begin,
              int end) override {
    auto update_numel = end - begin;
    std::vector<float> grad, grad2, tmp;
    grad.resize(update_numel);
    grad2.resize(update_numel);
    tmp.resize(update_numel);

    auto blas = GetBlas<float>();
    blas.VCOPY(update_numel, update_values + begin, grad.data());
    blas.VCOPY(update_numel, update_values + begin, grad2.data());

    blas.SCAL(update_numel, 1 - beta1, grad.data());
    blas.VSQUARE(update_numel, grad2.data(), grad2.data());
    blas.SCAL(update_numel, 1 - beta2, grad2.data());

    blas.SCAL(update_numel, beta1, moment1 + begin);
    blas.VADD(update_numel, moment1 + begin, grad.data(), moment1 + begin);
    blas.SCAL(update_numel, beta2, moment2 + begin);
    blas.VADD(update_numel, moment2 + begin, grad2.data(), moment2 + begin);

    beta1_pow[0] = beta1_pow[0] * beta1;
    beta2_pow[0] = beta2_pow[0] * beta2;

    float lr_ = learning_rate[0];
    lr_ *= sqrt(1 - beta2_pow[0]) / (1 - beta1_pow[0]);

    float* tmp_ = tmp.data();
    float eps_ = epsilon * sqrt(1 - beta2_pow[0]);

    SQRT<float>(update_numel, moment2 + begin, tmp_);
    ADD<float>(update_numel, tmp_, eps_, tmp_);

    blas.VDIV(update_numel, moment1 + begin, tmp_, tmp_);
    blas.SCAL(update_numel, lr_, tmp_);
    blas.VSUB(update_numel, param + begin, tmp_, param + begin);
  }

  float* learning_rate;

  float* param;
  float* moment1;
  float* moment2;

  float* beta1_pow;
  float* beta2_pow;

  float beta1;
  float beta2;
  float epsilon;
};

}  // namespace distributed
}  // namespace paddle