kernel_factory.h 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ostream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>

23 24 25 26 27 28
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/type_defs.h"
29 30 31
#include "paddle/utils/flat_hash_map.h"
#include "paddle/utils/small_vector.h"

32
namespace phi {
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

using DataType = paddle::experimental::DataType;
using DataLayout = paddle::experimental::DataLayout;

/**
 * [ Naming considerations ]
 *
 * The tensor operation library contains many kernels, and the computation
 * in each specific scenario is represented by an kernel.
 *
 * We directly named it `Kernel` instead of `Kernel`, the tensor operation
 * library here and fluid are independent, avoiding developers from
 * misunderstanding the relationship between the two concepts.
 */

class KernelContext;

class KernelKey {
 public:
  KernelKey() = default;

  KernelKey(Backend backend, DataLayout layout, DataType dtype)
      : backend_(backend), layout_(layout), dtype_(dtype) {}

  Backend backend() const { return backend_; }
  DataLayout layout() const { return layout_; }
  DataType dtype() const { return dtype_; }

  struct Hash {
    // Note: Now the number of bits we need does not exceed 32 bits, so there is
    // no need to use 64 bits. If needed in the future, it can be expanded,
    // but now we don’t over-design.
    uint32_t operator()(const KernelKey& key) const;
  };

  uint32_t hash_value() const { return Hash()(*this); }

  bool operator<(const KernelKey& key) const {
    return hash_value() < key.hash_value();
  }

  bool operator==(const KernelKey& key) const {
    return hash_value() == key.hash_value();
  }

  bool operator!=(const KernelKey& key) const {
    return hash_value() != key.hash_value();
  }

 private:
  // In total should be smaller than 32.
  constexpr static int kBackendBitLength = 8;
  constexpr static int kDataLayoutBitLength = 4;
  constexpr static int kDataTypeBitLength = 8;

  Backend backend_{Backend::UNDEFINED};
  DataLayout layout_{DataLayout::UNDEFINED};
  DataType dtype_{DataType::UNDEFINED};
};

// TODO(chenweihang): how deal with vector<Param>?
struct TensorArgDef {
  Backend backend;
  DataLayout layout;
  DataType dtype;
H
hong 已提交
98
  std::type_index type_index;
99

H
hong 已提交
100 101 102 103 104 105 106 107
  TensorArgDef(Backend in_backend,
               DataLayout in_layout,
               DataType in_dtype,
               std::type_index in_type_index)
      : backend(in_backend),
        layout(in_layout),
        dtype(in_dtype),
        type_index(in_type_index) {}
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

  TensorArgDef& SetBackend(Backend in_backend) {
    backend = in_backend;
    return *this;
  }

  TensorArgDef& SetDataLayout(DataLayout in_layout) {
    layout = in_layout;
    return *this;
  }

  TensorArgDef& SetDataType(DataType in_dtype) {
    dtype = in_dtype;
    return *this;
  }
};

struct AttributeArgDef {
  std::type_index type_index;

  explicit AttributeArgDef(std::type_index type_index)
      : type_index(type_index) {}
};

class KernelArgsDef {
 public:
  KernelArgsDef() = default;

H
hong 已提交
136 137 138 139 140
  void AppendInput(Backend backend,
                   DataLayout layout,
                   DataType dtype,
                   std::type_index type_index) {
    input_defs_.emplace_back(TensorArgDef(backend, layout, dtype, type_index));
141 142
  }

H
hong 已提交
143 144 145 146 147
  void AppendOutput(Backend backend,
                    DataLayout layout,
                    DataType dtype,
                    std::type_index type_index) {
    output_defs_.emplace_back(TensorArgDef(backend, layout, dtype, type_index));
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  }

  void AppendAttribute(std::type_index type_index) {
    attribute_defs_.emplace_back(AttributeArgDef(type_index));
  }

  const paddle::SmallVector<TensorArgDef>& input_defs() const {
    return input_defs_;
  }

  const paddle::SmallVector<TensorArgDef>& output_defs() const {
    return output_defs_;
  }

  const paddle::SmallVector<AttributeArgDef>& attribute_defs() const {
    return attribute_defs_;
  }

  paddle::SmallVector<TensorArgDef>& input_defs() { return input_defs_; }

  paddle::SmallVector<TensorArgDef>& output_defs() { return output_defs_; }

  paddle::SmallVector<AttributeArgDef>& attribute_defs() {
    return attribute_defs_;
  }

 private:
  paddle::SmallVector<TensorArgDef> input_defs_{{}};
  paddle::SmallVector<TensorArgDef> output_defs_{{}};
  paddle::SmallVector<AttributeArgDef> attribute_defs_{{}};
};

class Kernel {
 public:
  // for map element contruct
  Kernel() = default;

185 186
  explicit Kernel(KernelFn fn, void* variadic_fn)
      : fn_(fn), variadic_fn_(variadic_fn) {}
187 188 189

  void operator()(KernelContext* ctx) const { fn_(ctx); }

190 191 192 193 194 195
  template <typename Fn>
  Fn GetVariadicKernelFn() const {
    auto* func = reinterpret_cast<Fn>(variadic_fn_);
    return func;
  }

196 197 198 199
  KernelArgsDef* mutable_args_def() { return &args_def_; }

  const KernelArgsDef& args_def() const { return args_def_; }

200 201 202 203
  const TensorArgDef& InputAt(size_t idx) const {
    return args_def_.input_defs().at(idx);
  }

204 205
  TensorArgDef& InputAt(size_t idx) { return args_def_.input_defs().at(idx); }

206 207 208 209
  const TensorArgDef& OutputAt(size_t idx) const {
    return args_def_.output_defs().at(idx);
  }

210 211 212 213 214 215
  TensorArgDef& OutputAt(size_t idx) { return args_def_.output_defs().at(idx); }

  bool IsValid() { return fn_ != nullptr; }

 private:
  KernelFn fn_{nullptr};
216
  void* variadic_fn_ = nullptr;
217 218 219
  KernelArgsDef args_def_;
};

220 221 222 223
using KernelKeyMap = paddle::flat_hash_map<KernelKey, Kernel, KernelKey::Hash>;

using KernelNameMap = paddle::flat_hash_map<std::string, KernelKeyMap>;

224 225 226 227 228 229 230 231 232 233
/**
 * Note: Each Computation need a basic kernel map that named by kernel_name.
 *       Such as for scale op, KernelMap contains a `scale` kernel map,
 *       if it still need other overload kernel, the op name can be
 *       `scale.***`.
 */
class KernelFactory {
 public:
  static KernelFactory& Instance();

234
  KernelNameMap& kernels() { return kernels_; }
235

236 237
  bool HasCompatiblePhiKernel(const std::string& op_type) const {
    return kernels_.find(TransToPhiKernelName(op_type)) != kernels_.end();
238 239
  }

Y
YuanRisheng 已提交
240
  const Kernel& SelectKernelOrThrowError(const std::string& kernel_name,
241 242
                                         const KernelKey& kernel_key) const;

Y
YuanRisheng 已提交
243
  const Kernel& SelectKernelOrThrowError(const std::string& kernel_name,
244 245 246 247
                                         Backend backend,
                                         DataLayout layout,
                                         DataType dtype) const;

Y
YuanRisheng 已提交
248
  Kernel SelectKernel(const std::string& kernel_name,
249 250
                      const KernelKey& kernel_key) const;

251
  KernelKeyMap SelectKernelMap(const std::string& kernel_name) const;
252

253 254 255
 private:
  KernelFactory() = default;

256
  KernelNameMap kernels_;
257 258 259 260 261 262 263 264 265 266 267 268
};

inline std::ostream& operator<<(std::ostream& os, const KernelKey& kernel_key) {
  os << "(" << kernel_key.backend() << ", " << kernel_key.layout() << ", "
     << kernel_key.dtype() << ")";
  return os;
}

std::ostream& operator<<(std::ostream& os, const Kernel& kernel);

std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory);

269
}  // namespace phi