send_recv_op_test.cc 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14 15

#include <unistd.h>
Y
Yancey1989 已提交
16
#include <string>
武毅 已提交
17 18 19
#include <thread>

#include "gtest/gtest.h"
Y
Yi Wang 已提交
20 21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
T
typhoonzero 已提交
23
#include "paddle/fluid/operators/listen_and_serv_op.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
26
#include "paddle/fluid/string/printf.h"
武毅 已提交
27 28

USE_NO_KERNEL_OP(send);
T
typhoonzero 已提交
29
USE_NO_KERNEL_OP(listen_and_serv);
武毅 已提交
30 31
USE_OP(sum);

Y
Yancey 已提交
32 33 34 35
namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;

武毅 已提交
36
// global for simplicity.
T
typhoonzero 已提交
37
std::unique_ptr<f::OperatorBase> listen_and_serv_op;
T
typhoonzero 已提交
38
int selected_port;
武毅 已提交
39

Y
Yancey 已提交
40 41
void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) {
  p::CPUDeviceContext ctx(place);
Y
Yancey1989 已提交
42 43 44
  for (int i = 0; i < 2; ++i) {
    auto var_name = paddle::string::Sprintf("x%d", i);
    auto var = scope.Var(var_name);
Y
Yancey 已提交
45
    auto tensor = var->GetMutable<f::LoDTensor>();
Y
Yancey1989 已提交
46 47 48 49 50
    tensor->Resize({10, 10});
    float *expect = tensor->mutable_data<float>(place);
    for (int64_t i = 0; i < tensor->numel(); ++i) {
      expect[i] = static_cast<float>(i);
    }
武毅 已提交
51 52 53
  }

  auto out_var = scope.Var("Out");
Y
Yancey 已提交
54
  auto out_tensor = out_var->GetMutable<f::LoDTensor>();
武毅 已提交
55
  out_tensor->Resize({10, 10});
Y
Yancey1989 已提交
56
  out_tensor->mutable_data<float>(place);  // allocate
武毅 已提交
57 58
}

Y
Yancey 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) {
  p::CPUDeviceContext ctx(place);
  int64_t height = 10;
  int64_t row_numel = 10;
  m::SetConstant<p::CPUDeviceContext, float> set_one;
  // init x0
  std::vector<int64_t> rows0{0, 4, 7};
  auto x0_var = scope.Var("x0");
  auto x0 = x0_var->GetMutable<f::SelectedRows>();
  x0->set_rows(rows0);
  x0->set_height(height);
  auto x0_value = x0->mutable_value();
  x0_value->mutable_data<float>(
      f::make_ddim({static_cast<int64_t>(rows0.size()), row_numel}), place);
  set_one(ctx, x0_value, 1.0);

  // init x1
  std::vector<int64_t> rows1{2, 9};
  auto x1_var = scope.Var("x1");
  auto x1 = x1_var->GetMutable<f::SelectedRows>();
  x1->set_rows(rows1);
  x1->set_height(height);
  auto x1_value = x1->mutable_value();
  x1_value->mutable_data<float>(
      f::make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), place);
  set_one(ctx, x1_value, 1.0);

  auto out_var = scope.Var("Out");
  auto out = out_var->GetMutable<f::SelectedRows>();
  auto out_value = out->mutable_value();
  out->set_height(height);
  out_value->mutable_data<float>(f::make_ddim({5, 10}), place);
}

void AddOp(const std::string &type, const f::VariableNameMap &inputs,
           const f::VariableNameMap &outputs, f::AttributeMap attrs,
           f::BlockDesc *block) {
武毅 已提交
96 97 98 99
  // insert output
  for (auto kv : outputs) {
    for (auto v : kv.second) {
      auto var = block->Var(v);
Y
Yancey1989 已提交
100
      var->SetDataType(f::proto::VarType::FP32);
武毅 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    }
  }

  // insert op
  auto op = block->AppendOp();
  op->SetType(type);
  for (auto &kv : inputs) {
    op->SetInput(kv.first, kv.second);
  }
  for (auto &kv : outputs) {
    op->SetOutput(kv.first, kv.second);
  }
  op->SetAttrMap(attrs);
}

Y
Yancey 已提交
116 117 118 119 120 121 122 123
void StartServerNet(bool is_sparse) {
  f::Scope scope;
  p::CPUPlace place;
  if (is_sparse) {
    InitSelectedRowsInScope(scope, place);
  } else {
    InitTensorsInScope(scope, place);
  }
武毅 已提交
124

T
typhoonzero 已提交
125
  // sub program run in listen_and_serv_op, for simple test we use sum
Y
Yancey 已提交
126
  f::ProgramDesc program;
Q
qiaolongfei 已提交
127 128
  const auto &root_block = program.Block(0);
  auto *optimize_block = program.AppendBlock(root_block);
武毅 已提交
129
  // X for server side tensors, RX for received tensers, must be of same shape.
Y
Yancey1989 已提交
130
  AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, optimize_block);
武毅 已提交
131

Y
Yancey 已提交
132
  f::AttributeMap attrs;
T
typhoonzero 已提交
133
  attrs.insert({"endpoint", std::string("127.0.0.1:0")});
Y
Yancey1989 已提交
134
  attrs.insert({"Fanin", 1});
Y
Yancey 已提交
135
  attrs.insert({"ParamList", std::vector<std::string>({"Out"})});
T
typhoonzero 已提交
136
  attrs.insert({"GradList", std::vector<std::string>({"x1"})});
Y
Yancey1989 已提交
137
  attrs.insert({"OptimizeBlock", optimize_block});
T
typhoonzero 已提交
138
  listen_and_serv_op =
Y
Yancey1989 已提交
139
      f::OpRegistry::CreateOp("listen_and_serv", {{"X", {"x1"}}}, {}, attrs);
T
typhoonzero 已提交
140
  LOG(INFO) << "selected port before run " << selected_port;
T
typhoonzero 已提交
141
  listen_and_serv_op->Run(scope, place);
T
typhoonzero 已提交
142
  LOG(INFO) << "server exit";
武毅 已提交
143 144
}

Y
Yancey 已提交
145 146
TEST(SendRecvOp, CPUDense) {
  std::thread server_thread(StartServerNet, false);
Y
Yancey1989 已提交
147
  sleep(5);  // wait server to start
武毅 已提交
148
  // local net
Y
Yancey 已提交
149 150
  f::Scope scope;
  p::CPUPlace place;
武毅 已提交
151
  InitTensorsInScope(scope, place);
Y
Yancey1989 已提交
152 153
  // create rpc client var
  scope.Var("RPC_CLIENT_VAR");
武毅 已提交
154

Y
Yancey 已提交
155
  f::AttributeMap attrs;
T
typhoonzero 已提交
156 157 158 159 160 161 162
  selected_port = static_cast<paddle::operators::ListenAndServOp *>(
                      listen_and_serv_op.get())
                      ->GetSelectedPort();
  LOG(INFO) << "selected port " << selected_port;
  std::string endpoint = paddle::string::Sprintf("127.0.0.1:%d", selected_port);
  attrs.insert({"endpoints", std::vector<std::string>({endpoint})});
  attrs.insert({"epmap", std::vector<std::string>({endpoint})});
Y
Yancey1989 已提交
163 164 165
  auto send_op = f::OpRegistry::CreateOp(
      "send", {{"X", {"x1"}}},
      {{"Out", {"Out"}}, {"RPCClient", {"RPC_CLIENT_VAR"}}}, attrs);
T
typhoonzero 已提交
166
  LOG(INFO) << "before run " << endpoint;
T
typhoonzero 已提交
167
  send_op->Run(scope, place);
T
typhoonzero 已提交
168
  LOG(INFO) << "end run";
武毅 已提交
169

T
typhoonzero 已提交
170
  auto in_var = scope.Var("x1");
Y
Yancey 已提交
171
  auto tensor = in_var->GetMutable<f::LoDTensor>();
武毅 已提交
172
  float *expected = tensor->data<float>();
Y
Yancey 已提交
173 174
  auto out_var = scope.Var("Out");
  auto target = out_var->GetMutable<f::LoDTensor>();
T
typhoonzero 已提交
175
  // x1 * 2 == x0
武毅 已提交
176 177 178 179 180
  EXPECT_NE(target->memory_size(), size_t(0));
  float *actual = target->data<float>();
  for (int64_t i = 0; i < target->numel(); ++i) {
    EXPECT_EQ(expected[i] * 2, actual[i]);
  }
T
typhoonzero 已提交
181
  LOG(INFO) << "before stop";
T
typhoonzero 已提交
182
  listen_and_serv_op->Stop();
Y
Yancey 已提交
183
  server_thread.join();
T
typhoonzero 已提交
184
  listen_and_serv_op.reset(nullptr);
Y
Yancey 已提交
185
}
T
typhoonzero 已提交
186

Y
Yancey 已提交
187 188 189 190 191 192 193 194
TEST(SendRecvOp, CPUSparse) {
  std::thread server_thread(StartServerNet, true);
  sleep(3);  // wait server to start
  // local net
  f::Scope scope;
  p::CPUPlace place;
  p::CPUDeviceContext ctx(place);
  InitSelectedRowsInScope(scope, place);
Y
Yancey1989 已提交
195
  scope.Var("RPC_CLIENT_VAR");
Y
Yancey 已提交
196
  f::AttributeMap attrs;
T
typhoonzero 已提交
197 198 199 200 201 202 203
  selected_port = static_cast<paddle::operators::ListenAndServOp *>(
                      listen_and_serv_op.get())
                      ->GetSelectedPort();
  LOG(INFO) << "selected port " << selected_port;
  std::string endpoint = paddle::string::Sprintf("127.0.0.1:%d", selected_port);
  attrs.insert({"endpoints", std::vector<std::string>({endpoint})});
  attrs.insert({"epmap", std::vector<std::string>({endpoint})});
Y
Yancey1989 已提交
204 205 206
  auto send_op = f::OpRegistry::CreateOp(
      "send", {{"X", {"x1"}}},
      {{"Out", {"Out"}}, {"RPCClient", {"RPC_CLIENT_VAR"}}}, attrs);
Y
Yancey 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  send_op->Run(scope, place);

  auto x0 = scope.Var("x0")->GetMutable<f::SelectedRows>();
  auto x1 = scope.Var("x1")->GetMutable<f::SelectedRows>();
  auto out = scope.Var("Out")->GetMutable<f::SelectedRows>();
  auto actual = out->mutable_value();

  std::unique_ptr<f::SelectedRows> expect{new f::SelectedRows()};
  auto expect_value = expect->mutable_value();
  expect_value->mutable_data<float>(f::make_ddim({5, 10}), place);

  m::SelectedRowsAdd<p::CPUDeviceContext, float> add_functor;
  add_functor(ctx, *x0, *x1, expect.get());

  EXPECT_EQ(actual->numel(), expect_value->numel());
  EXPECT_EQ(out->rows().size(), x0->rows().size() + x1->rows().size());

  for (int64_t i = 0; i < expect_value->numel(); ++i) {
    EXPECT_EQ(expect_value->mutable_data<float>(place)[i],
              actual->mutable_data<float>(place)[i]);
  }
T
typhoonzero 已提交
228
  listen_and_serv_op->Stop();
武毅 已提交
229
  server_thread.join();
T
typhoonzero 已提交
230
  listen_and_serv_op.reset();
武毅 已提交
231
}