test_prim2orig.py 14.2 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers.utils import flatten
from paddle.incubate.autograd.primrules import _orig2prim, _prim2orig, _jvp, _transpose

paddle.enable_static()


############################ Test prim2orig rules ############################
class TestAddPPrim2Orig(unittest.TestCase):
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    def setUp(self):
        self.main_program = paddle.static.Program()
        self.startup_program = paddle.static.Program()
        self.layer_help = LayerHelper('TestPrim2Orig')

        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
            self.init_data()

    def init_data(self):
        self.op_type = 'add_p'
        X = paddle.static.data(name='X', shape=[2, 2], dtype='float')
        Y = paddle.static.data(name='Y', shape=[2, 2], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['add_p', 'elementwise_add']
        # { prim_op_output_var: orign_op_out_index }
        self.out_map = {self.output['Z']: 0}

    def test_op(self):
        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
57 58 59 60
            op = self.layer_help.append_op(type=self.op_type,
                                           inputs=self.input,
                                           outputs=self.output,
                                           attrs=self.attrs)
61 62 63 64 65 66 67 68 69 70

            orig_out = _prim2orig(op, *self.prim2orig_args)
            all_ops = [op.type for op in self.main_program.block(0).ops]
            self.assertEqual(sorted(all_ops), sorted(self.all_ops))
            orig_out = flatten(orig_out)
            for k, v in self.out_map.items():
                self.assertEqual(k.shape, orig_out[v].shape)


class TestSubPPrim2Orig(TestAddPPrim2Orig):
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    def init_data(self):
        self.op_type = 'sub_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['sub_p', 'elementwise_sub']
        self.out_map = {self.output['Z']: 0}


class TestMulPPrim2Orig(TestAddPPrim2Orig):
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    def init_data(self):
        self.op_type = 'mul_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['mul_p', 'elementwise_mul']
        self.out_map = {self.output['Z']: 0}


class TestDivPPrim2Orig(TestAddPPrim2Orig):
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def init_data(self):
        self.op_type = 'div_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[7, 8], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['div_p', 'elementwise_div']
        self.out_map = {self.output['Z']: 0}


class TestSqrtPPrim2Orig(TestAddPPrim2Orig):
128

129 130 131 132
    def init_data(self):
        self.op_type = 'sqrt_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

133 134 135
        self.input = {
            'X': X,
        }
136 137 138 139 140 141 142 143 144 145 146 147
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['sqrt_p', 'sqrt']
        self.out_map = {self.output['Y']: 0}


class TestTanhPPrim2Orig(TestAddPPrim2Orig):
148

149 150 151 152
    def init_data(self):
        self.op_type = 'tanh_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

153 154 155
        self.input = {
            'X': X,
        }
156 157 158 159 160 161 162 163 164 165 166
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['tanh_p', 'tanh']
        self.out_map = {self.output['Y']: 0}


167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
class TestSinPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'sin_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['sin_p', 'sin']
        self.out_map = {self.output['Y']: 0}


class TestCosPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'cos_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['cos_p', 'cos']
        self.out_map = {self.output['Y']: 0}


class TestExpPPrim2Orig(TestAddPPrim2Orig):

    def init_data(self):
        self.op_type = 'exp_p'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, )
        self.all_ops = ['exp_p', 'exp']
        self.out_map = {self.output['Y']: 0}


227
class TestReshapePPrim2Orig(TestAddPPrim2Orig):
228

229 230 231 232
    def init_data(self):
        self.op_type = 'reshape_p'
        X = paddle.static.data(name='X', shape=[2, 8], dtype='float64')

233 234 235
        self.input = {
            'X': X,
        }
236 237 238 239 240 241 242 243 244 245 246 247
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'shape': [4, 4]}

        self.prim2orig_args = (X, )
        self.all_ops = ['reshape_p', 'reshape2']
        self.out_map = {self.output['Y']: 0}


class TestBroadcastPPrim2Orig(TestAddPPrim2Orig):
248

249 250 251 252
    def init_data(self):
        self.op_type = 'broadcast_p'
        X = paddle.static.data(name='X', shape=[2, 8], dtype='float64')

253 254 255
        self.input = {
            'X': X,
        }
256 257 258 259 260 261 262 263 264 265 266 267
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'shape': [10, 2, 8]}

        self.prim2orig_args = (X, )
        self.all_ops = ['broadcast_p', 'expand_v2']
        self.out_map = {self.output['Y']: 0}


class TestTransposePPrim2Orig(TestAddPPrim2Orig):
268

269 270 271 272
    def init_data(self):
        self.op_type = 'transpose_p'
        X = paddle.static.data(name='X', shape=[7, 8, 9, 10], dtype='float64')

273 274 275
        self.input = {
            'X': X,
        }
276 277 278 279 280 281 282 283 284 285 286 287
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [1, 2, 0, 3]}

        self.prim2orig_args = (X, )
        self.all_ops = ['transpose_p', 'transpose2']
        self.out_map = {self.output['Y']: 0}


class TestSplitPPrim2Orig(TestAddPPrim2Orig):
288

289 290 291 292
    def init_data(self):
        self.op_type = 'split_p'
        X = paddle.static.data(name='X', shape=[3, 9, 5], dtype='float64')

293 294 295
        self.input = {
            'X': X,
        }
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        self.output = {
            'YS': [
                self.layer_help.create_variable_for_type_inference(
                    dtype=X.dtype) for i in range(3)
            ]
        }
        self.attrs = {'num_or_sections': [2, 3, 4], 'axis': 1}

        self.prim2orig_args = (X, )
        self.all_ops = ['split_p', 'split']
        self.out_map = {
            self.output['YS'][0]: 0,
            self.output['YS'][1]: 1,
            self.output['YS'][2]: 2,
        }


class TestConcatPPrim2Orig(TestAddPPrim2Orig):
314

315 316 317 318 319 320
    def init_data(self):
        self.op_type = 'concat_p'
        X = paddle.static.data(name='X', shape=[3, 9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[2, 9, 5], dtype='float64')
        Z = paddle.static.data(name='Z', shape=[1, 9, 5], dtype='float64')

321 322 323
        self.input = {
            'XS': [X, Y, Z],
        }
324 325 326 327 328 329 330 331 332 333 334 335
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': 0}

        self.prim2orig_args = ((X, Y, Z), )
        self.all_ops = ['concat_p', 'concat']
        self.out_map = {self.output['Y']: 0}


class TestReducePPrim2Orig(TestAddPPrim2Orig):
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    def init_data(self):
        self.op_type = 'reduce_p'
        X = paddle.static.data(name='X', shape=[3, 9, 5], dtype='float64')

        self.input = {'X': X}
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [1], 'keepdim': True}

        self.prim2orig_args = (X, )
        self.all_ops = ['reduce_p', 'reduce_sum']
        self.out_map = {self.output['Y']: 0}


class TestMatmulPPrim2Orig(TestAddPPrim2Orig):
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    def init_data(self):
        self.op_type = 'matmul_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[5, 9], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['matmul_p', 'matmul_v2']
        self.out_map = {self.output['Z']: 0}


class TestSliceSelectPPrim2Orig(TestAddPPrim2Orig):
373

374 375 376 377
    def init_data(self):
        self.op_type = 'slice_select_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')

378 379 380
        self.input = {
            'X': X,
        }
381 382 383 384 385 386 387 388 389 390 391 392
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [0], 'starts': [1], 'ends': [8], 'strides': [2]}

        self.prim2orig_args = (X, )
        self.all_ops = ['slice_select_p', 'strided_slice']
        self.out_map = {self.output['Y']: 0}


class TestSliceAssignPPrim2Orig(TestAddPPrim2Orig):
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    def init_data(self):
        self.op_type = 'slice_assign_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[9, 3], dtype='float64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [1], 'starts': [0], 'ends': [3], 'strides': [1]}

        self.prim2orig_args = (X, Y)
        self.all_ops = ['slice_assign_p', 'assign', 'set_value']
        self.out_map = {self.output['Z']: 0}


class TestGatherPPrim2Orig(TestAddPPrim2Orig):
412

413 414 415
    def init_data(self):
        self.op_type = 'gather_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
416 417 418
        IndexTensor = paddle.static.data(name='IndexTensor',
                                         shape=[3],
                                         dtype='int32')
419 420 421 422 423 424

        self.input = {'X': X, 'IndexTensor': IndexTensor}
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
425 426 427
        self.attrs = {
            'axis': 0,
        }
428 429 430

        self.prim2orig_args = (
            IndexTensor,
431 432
            X,
        )
433 434 435 436 437
        self.all_ops = ['gather_p', 'gather']
        self.out_map = {self.output['Y']: 0}


class TestScatterAddPPrim2Orig(TestAddPPrim2Orig):
438

439 440 441 442
    def init_data(self):
        self.op_type = 'scatter_add_p'
        X = paddle.static.data(name='X', shape=[9, 5], dtype='float64')
        Y = paddle.static.data(name='Y', shape=[3, 5], dtype='float64')
443 444 445
        IndexTensor = paddle.static.data(name='IndexTensor',
                                         shape=[3],
                                         dtype='int32')
446 447 448 449 450 451

        self.input = {'X': X, 'Y': Y, 'IndexTensor': IndexTensor}
        self.output = {
            'Z':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
452 453 454
        self.attrs = {
            'axis': 0,
        }
455 456 457 458 459 460 461 462 463

        self.prim2orig_args = (IndexTensor, X, Y)
        self.all_ops = [
            'scatter_add_p', 'fill_any_like', 'scatter', 'elementwise_add'
        ]
        self.out_map = {self.output['Z']: 0}


class TestFillConstantPPrim2Orig(TestAddPPrim2Orig):
464

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    def init_data(self):
        self.op_type = 'fill_constant_p'

        self.input = {}
        self.output = {
            'Y':
            self.layer_help.create_variable_for_type_inference(paddle.int32)
        }
        self.attrs = {'value': 10, 'shape': [5, 5], 'dtype': paddle.int32}

        self.prim2orig_args = ()
        self.all_ops = ['fill_constant_p', 'fill_constant']
        self.out_map = {self.output['Y']: 0}


if __name__ == '__main__':
    unittest.main()