bilinear_interp_op.h 5.2 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
class BilinearInterpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_t = ctx.Input<Tensor>("X");      // float tensor
    auto* output_t = ctx.Output<Tensor>("Out");  // float tensor
    auto* input = input_t->data<T>();
    auto* output = output_t->mutable_data<T>(ctx.GetPlace());

    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
    int batch_size = input_t->dims()[0];
    int channels = input_t->dims()[1];
    int in_h = input_t->dims()[2];
    int in_w = input_t->dims()[3];

    int in_hw = in_h * in_w;
    int out_hw = out_h * out_w;
    int in_chw = channels * in_hw;
    int out_chw = channels * out_hw;

    T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
    T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;

    if (in_h == out_h && in_w == out_w) {
49
      memcpy(output, input, input_t->numel() * sizeof(T));
W
wangyang59 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    } else {
      for (int k = 0; k < batch_size; ++k) {  // loop for batches
        for (int i = 0; i < out_h; ++i) {     // loop for images
          int h = ratio_h * i;
          int hid = (h < in_h - 1) ? 1 : 0;
          T h1lambda = ratio_h * i - h;
          T h2lambda = 1 - h1lambda;

          for (int j = 0; j < out_w; ++j) {
            int w = ratio_w * j;
            int wid = (w < in_w - 1) ? 1 : 0;
            T w1lambda = ratio_w * j - w;
            T w2lambda = 1 - w1lambda;
            // calculate four position for bilinear interpolation
            const T* in_pos = &input[k * in_chw + h * in_w + w];
            T* out_pos = &output[k * out_chw + i * out_w + j];

            for (int c = 0; c < channels; ++c) {  // loop for channels
              // bilinear interpolation
              out_pos[0] =
                  h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[wid]) +
                  h1lambda * (w2lambda * in_pos[hid * in_w] +
                              w1lambda * in_pos[hid * in_w + wid]);
              in_pos += in_hw;
              out_pos += out_hw;
            }
          }
        }
      }
    }
  }
};

template <typename T>
class BilinearInterpGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
    auto* d_output = d_output_t->data<T>();

    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
    int batch_size = d_input_t->dims()[0];
    int channels = d_input_t->dims()[1];
    int in_h = d_input_t->dims()[2];
    int in_w = d_input_t->dims()[3];

    int in_hw = in_h * in_w;
    int out_hw = out_h * out_w;
    int in_chw = channels * in_hw;
    int out_chw = channels * out_hw;

    T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
    T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;

    if (in_h == out_h && in_w == out_w) {
108
      memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
W
wangyang59 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    } else {
      for (int k = 0; k < batch_size; ++k) {  // loop for batches
        for (int i = 0; i < out_h; ++i) {     // loop for images
          int h = ratio_h * i;
          int hid = (h < in_h - 1) ? 1 : 0;
          T h1lambda = ratio_h * i - h;
          T h2lambda = 1 - h1lambda;

          for (int j = 0; j < out_w; ++j) {
            int w = ratio_w * j;
            int wid = (w < in_w - 1) ? 1 : 0;
            T w1lambda = ratio_w * j - w;
            T w2lambda = 1 - w1lambda;
            T* in_pos = &d_input[k * in_chw + h * in_w + w];
            const T* out_pos = &d_output[k * out_chw + i * out_w + j];

            for (int c = 0; c < channels; ++c) {  // loop for channels
126 127 128 129
              in_pos[0] += h2lambda * w2lambda * out_pos[0];
              in_pos[wid] += h2lambda * w1lambda * out_pos[0];
              in_pos[hid * in_w] += h1lambda * w2lambda * out_pos[0];
              in_pos[hid * in_w + wid] += h1lambda * w1lambda * out_pos[0];
W
wangyang59 已提交
130 131 132 133 134 135 136 137 138 139 140 141
              in_pos += in_hw;
              out_pos += out_hw;
            }
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle