Parameter.cpp 16.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include <fstream>
#include "paddle/math/MathUtils.h"
#include "AverageOptimizer.h"
#include "FirstOrderOptimizer.h"
#include "Parameter.h"
#include "paddle/utils/Logging.h"
#include "OptimizerFunctions.h"
#include "OptimizerWithRegularizer.h"
#include "ParameterUpdateFunctions.h"
#include "paddle/math/SparseRowMatrix.h"
#include "paddle/math/CpuSparseMatrix.h"
#include "hl_gpu.h"
#include "paddle/utils/CommandLineParser.h"

P_DEFINE_int32(enable_grad_share, (100 * 1024 * 1024),
               "threshold for enable gradient parameter share for batch "
               "multi-cpu training");
P_DEFINE_int32(
    grad_share_block_num, 64,
    "block number of gradient parameter share for batch multi-cpu training");

namespace paddle {

const std::string Parameter::kMissParameterFail = "fail";
const std::string Parameter::kMissParameterRand = "rand";
const std::string Parameter::kMissParameterZero = "zero";

Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit)
    : config_(config),
      useGpu_(useGpu),
      deviceId_(-1),
      sharedCount_(0),
      updateCounter_(0),
      updated_(false) {
  setID(-1); /* capture uninitialized id */
  if (useGpu_ && FLAGS_parallel_nn) {
    /* gpu environment is specified by device property */
    deviceId_ = config_.device();
    if (deviceId_ < 0) {
      useGpu_ = false;
    }
  }

  if (doInit) {
    initialize();
  }

  for (int i = 0; i < config.update_hooks_size(); ++i) {
    this->updaterHooks_.push_back(IParameterUpdaterHook::create(config, i));
  }
}

void Parameter::initialize() {
  SetDevice device(deviceId_);

  bufs_[PARAMETER_VALUE] =
      Vector::createParallelVector(config_.size(), useGpu_);
  bufs_[PARAMETER_VALUE]->zeroMem();

  if (config_.is_sparse()) {
    enableSparseParameter();
  }

  if (!isStatic()) {
    bufs_[PARAMETER_GRADIENT] =
        Vector::createParallelVector(config_.size(), useGpu_);
    bufs_[PARAMETER_MOMENTUM] =
        Vector::createParallelVector(config_.size(), useGpu_);

    bufs_[PARAMETER_GRADIENT]->zeroMem();
    bufs_[PARAMETER_MOMENTUM]->zeroMem();
  }
}

void Parameter::randomize(const VectorPtr& value,
                          const ParameterConfig& config) {
  if (PARAMETER_INIT_UNIFORM == config.initial_strategy()) {
    // initialize the parameter as uniform distribution
    real initial_min = config.initial_mean() - config.initial_std();
    real initial_max = config.initial_mean() + config.initial_std();
    value->uniform(initial_min, initial_max);
    VLOG(1) << config.name() << ": initial_min=" << initial_min
                            << ", initial_max=" << initial_max;
  } else if (PARAMETER_INIT_NORMAL == config.initial_strategy()) {
    /* Initialize the parameters randomly */
    value->randnorm(config.initial_mean(), config.initial_std());
    VLOG(1) << config.name()
                            << ": initial_mean=" << config.initial_mean()
                            << ", initial_std=" << config.initial_std();
  } else {
    LOG(FATAL) << "not supported initial_strategy: "
               << config.initial_strategy();
  }
}

void Parameter::randomize() {
  if (!bufs_[PARAMETER_VALUE]) return;
  SetDevice device(deviceId_);
  Parameter::randomize(bufs_[PARAMETER_VALUE], config_);

  if (config_.is_sparse()) {
    if (format_ == SPARSE_CSC) {
      sparseRand(intBufs_[PARAMETER_COLS]->getData(),
                 intBufs_[PARAMETER_ROWS]->getData(), config_.size(),
                 config_.dims(1) + 1, config_.dims(0), useGpu_);
    } else {
      sparseRand(intBufs_[PARAMETER_ROWS]->getData(),
                 intBufs_[PARAMETER_COLS]->getData(), config_.size(),
                 config_.dims(0) + 1, config_.dims(1), useGpu_);
    }
  }
  setValueUpdated();
}

void Parameter::zeroMem() {
  if (!bufs_[PARAMETER_VALUE]) return;
  bufs_[PARAMETER_VALUE]->zeroMem();
  setValueUpdated();
  LOG(INFO) << getName() << " set to 0";
}

bool Parameter::isGradShared(size_t* blockNum) {
  if (!useGpu_ && !isStatic() && FLAGS_enable_grad_share > 0 &&
      !isGradSparseUpdate() &&
      this->getSize() > (size_t)FLAGS_enable_grad_share) {
    if (blockNum) {
      *blockNum = (size_t)FLAGS_grad_share_block_num;
    }
    return true;
  }
  return false;
}

bool Parameter::isValueShared() {
  return !useGpu_ && config_.is_shared() && FLAGS_trainer_count > 1;
}

bool Parameter::isGradSparseUpdate() const {
  return !useGpu_ && !isStatic() &&
      (config_.sparse_update() || config_.sparse_remote_update());
}

void Parameter::setMat(ParameterType pType, int matType) {
  CHECK(!mats_[pType]);

  if (config_.dims_size() == 0 && matType == MAT_NORMAL) {
    return;
  }

  CHECK_EQ((size_t)config_.dims_size(), 2LU);
  size_t height = config_.dims(0);
  size_t width = config_.dims(1);
  if (matType == MAT_NORMAL) {
    if (!config_.is_sparse()) {
      CHECK_EQ(height * width, bufs_[pType]->getSize());
      mats_[pType] =
          Matrix::create(bufs_[pType]->getMemoryHandle(), height, width);
    } else {
      size_t size = bufs_[pType]->getSize();
      CHECK_GE(height * width, size);
      if (format_ == SPARSE_CSR) {
        CHECK_EQ(height + 1, intBufs_[PARAMETER_ROWS]->getSize());
        CHECK_EQ(size, intBufs_[PARAMETER_COLS]->getSize());
      } else {
        CHECK_EQ(width + 1, intBufs_[PARAMETER_COLS]->getSize());
        CHECK_EQ(size, intBufs_[PARAMETER_ROWS]->getSize());
      }
      mats_[pType] = Matrix::createSparseMatrix(
          bufs_[pType]->getData(), intBufs_[PARAMETER_ROWS]->getData(),
          intBufs_[PARAMETER_COLS]->getData(), height, width,
          bufs_[pType]->getSize(), FLOAT_VALUE, format_, false, useGpu_);
    }
  } else if (matType == MAT_NORMAL_SHARED) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    size_t blockNum = 0;
    CHECK(isGradShared(&blockNum));
    mats_[pType] = std::make_shared<SharedCpuMatrix>(
        blockNum, std::dynamic_pointer_cast<CpuMemoryHandle>(
                      bufs_[pType]->getMemoryHandle()),
        height, width);
  } else if (matType == MAT_VALUE_SHARED) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    mats_[pType] = std::make_shared<SharedCpuMatrix>(
        std::dynamic_pointer_cast<CpuMemoryHandle>(
        bufs_[pType]->getMemoryHandle()), height, width);
  } else if (matType == MAT_SPARSE_ROW_IDS) {
    CHECK_EQ(height * width, bufs_[pType]->getSize());
    mats_[pType] = std::make_shared<SparseRowIdsCpuMatrix>(
        std::dynamic_pointer_cast<CpuMemoryHandle>(
            bufs_[pType]->getMemoryHandle()),
        height, width);
  } else if (matType == MAT_SPARSE_ROW) {
    auto valueMat =
        std::dynamic_pointer_cast<SparseRowCpuMatrix>(mats_[PARAMETER_VALUE]);
    SparseRowCpuMatrix::IndexDictPtr indexDict(nullptr);
    if (pType != PARAMETER_VALUE) {
      CHECK(valueMat) << "The matrix for PARAMETER_VALUE must be set "
                      << " and its type must be MAT_SPARSE_ROW,"
                      << " MAT_SPARSE_ROW_PREFETCH or MAT_CACHE_ROW";
      indexDict = valueMat->getIndexDictHandle();
    }
    auto mat = std::make_shared<SparseRowCpuMatrix>(
        nullptr, height, width,
        // grad share index with value
        indexDict);
    mats_[pType] = mat;
  } else if (matType == MAT_CACHE_ROW) {
    CHECK(isGradSparseUpdate());
    auto mat = std::make_shared<CacheRowCpuMatrix>(
      height, width);
    mats_[pType] = mat;
  } else if (matType == MAT_SPARSE_ROW_PREFETCH_FULL_SIZE ||
             matType == MAT_SPARSE_ROW_PREFETCH) {
    auto mat = std::make_shared<SparsePrefetchRowCpuMatrix>(
        bufs_[pType] ? std::dynamic_pointer_cast<CpuMemoryHandle>(
          bufs_[pType]->getMemoryHandle()) : nullptr,
        height, width,
        nullptr,  // indexDictHandle
        getGlobalSyncThreadPool());
    mats_[pType] = mat;
  } else if (matType == MAT_SPARSE_ROW_AUTO_GROW) {
    CHECK(isGradSparseUpdate());
    mats_[pType] = std::make_shared<SparseAutoGrowRowCpuMatrix>(
      height, width);
  } else {
    LOG(FATAL) << "Unsupported mat type" << matType;
  }
}

SparsePrefetchRowCpuMatrix* Parameter::getPrefetchMatrix() {
  MatrixPtr mat = mats_[PARAMETER_VALUE];
  if (mat) {
    return dynamic_cast<SparsePrefetchRowCpuMatrix*>(mat.get());
  }

  return nullptr;
}

void Parameter::updateWithGradient(real learningRate) {
  sgdUpdate(learningRate * config_.learning_rate(), config_.momentum(),
            config_.decay_rate(), bufs_[PARAMETER_VALUE].get(),
            bufs_[PARAMETER_GRADIENT].get(), bufs_[PARAMETER_MOMENTUM].get());
}

void Parameter::updateWithGradient(real learningRate, MatrixPtr gradMat,
                                   IVectorPtr t0, int currentTime, bool fini) {
  SparseRowCpuMatrix* sparseMat =
      dynamic_cast<SparseRowCpuMatrix*>(gradMat.get());
  CHECK(sparseMat);
  CHECK_EQ(config_.momentum(), 0.0f)
      << "not support momentum in sparse input sgd";
  bool useL1 = (config_.decay_rate_l1() != 0.0f);
  sparseMat->sgdUpdate(*bufs_[PARAMETER_VALUE], *t0,
                       learningRate * config_.learning_rate(), currentTime,
                       useL1 ? config_.decay_rate_l1() : config_.decay_rate(),
                       useL1, fini);
}

void Parameter::updateWithGradient(real learningRate, VectorPtr gradVec,
                                   bool normalUpdate) {
  if (normalUpdate) {
    sgdUpdate(learningRate * config_.learning_rate(), config_.momentum(),
              config_.decay_rate(), bufs_[PARAMETER_VALUE].get(), gradVec.get(),
              bufs_[PARAMETER_MOMENTUM].get());
  } else {
    size_t size = gradVec->getSize();
    real* mom = bufs_[PARAMETER_MOMENTUM]->getData();
    real* grad = gradVec->getData();
    real* value = bufs_[PARAMETER_VALUE]->getData();
    hl_matrix_add(mom, grad, mom, 1, size, 1.0f, learningRate);
    hl_matrix_add(value, grad, value, 1, size, 1.0f, learningRate);
  }
}

void Parameter::incUpdate(const UpdateCallback& callback) {
  // Static parameter is fixed, and does not need to be updated
  if (isStatic()) {
    return;
  }

  ++updateCounter_;
  if (isUpdatable()) {
    if (callback) callback(this);
    clearUpdate();
  }
}

bool Parameter::save(const std::string& filename) const {
  std::ofstream fs(filename, std::ios_base::binary);
  CHECK(fs) << "Fail to open " << filename;
  return save(fs);
}

bool Parameter::save(std::ostream& s) const {
  CpuVector vec(*bufs_[PARAMETER_VALUE].get());
  Header header;
  header.version = kFormatVersion;
  header.valueSize = sizeof(real);
  header.size = getSize();

  CHECK_EQ(header.size, vec.getSize());

  CHECK(s.write(reinterpret_cast<char*>(&header), sizeof(header)))
      << "Fail to write parameter " << getName();

  CHECK(s.write(reinterpret_cast<char*>(vec.getData()),
                header.size * sizeof(real)))
      << "Fail to write parameter " << getName();
  if (config_.is_sparse()) {
    CpuIVector rows(*intBufs_[PARAMETER_ROWS].get());
    CpuIVector cols(*intBufs_[PARAMETER_COLS].get());
    CHECK(s.write(reinterpret_cast<char*>(rows.getData()),
                  rows.getSize() * sizeof(int)))
        << "Fail to write parameter " << getName();
    CHECK(s.write(reinterpret_cast<char*>(cols.getData()),
                  cols.getSize() * sizeof(int)))
        << "Fail to write parameter " << getName();
  }

  return true;
}

/**
 * Load parameter value from a file
 */
bool Parameter::load(const std::string& filename) {
  std::ifstream fs(filename, std::ios_base::binary);
  if (!fs) {
    LOG(INFO) << "missing parameters [" << filename << "] while loading model.";
    if (isStatic()) {
      LOG(FATAL) << getName() << " is static but missing, not allowed.";
      return false;
    }
    if (kMissParameterFail == FLAGS_load_missing_parameter_strategy) {
      LOG(FATAL) << getName() << " missing, not allowed.";
      return false;
    }
    if (kMissParameterRand == FLAGS_load_missing_parameter_strategy) {
      LOG(INFO) << getName() << " missing, set to random.";
      randomize();
      return true;
    }
    if (kMissParameterZero == FLAGS_load_missing_parameter_strategy) {
      LOG(INFO) << getName() << " missing, set to zero.";
      zeroMem();
      return true;
    }
    LOG(FATAL) << "unsupported load_missing_parameter_strategy: "
        << FLAGS_load_missing_parameter_strategy;
    return false;
  }
  return load(fs);
}

bool Parameter::load(std::istream& s) {
  CpuVector vec(*bufs_[PARAMETER_VALUE].get());
  Header header;
  CHECK(s.read(reinterpret_cast<char*>(&header), sizeof(header)))
      << "Fail to read parameter " << getName();
  CHECK_EQ(header.version, kFormatVersion)
      << "Incorrect format version: " << header.version;
  CHECK_EQ(header.size, getSize())
      << "The size (" << header.size << ") in the file does not match the size "
      << "(" << getSize() << ") of the parameter: " << getName();
  CHECK_EQ(header.valueSize, sizeof(real))
      << "Unsupported valueSize " << header.valueSize << " at: " << getName();
  CHECK(s.read(reinterpret_cast<char*>(vec.getData()),
               header.size * sizeof(real)));

  auto & tmp = *bufs_[PARAMETER_VALUE].get();
  if (typeid(tmp) == typeid(GpuVector)) {
    bufs_[PARAMETER_VALUE]->copyFrom(vec);
  }

  if (config_.is_sparse() && config_.need_compact()) {
    // load from dense parameter with many zero
    CHECK_EQ(config_.dims_size(), 2);
    auto height = config_.dims(0);
    auto width = config_.dims(1);
    auto mat = Matrix::create(vec.getData(), height, width);
    CpuSparseMatrix sparseMat(height, width, 0, FLOAT_VALUE, format_,
                              /*trans*/ false);
    sparseMat.copyFrom(*mat, HPPL_STREAM_DEFAULT);
    auto nnz = sparseMat.getElementCnt();
    size_t rowSize = (format_ == SPARSE_CSR) ? height + 1 : nnz;
    size_t colSize = (format_ == SPARSE_CSR) ? nnz : width + 1;

    intBufs_[PARAMETER_ROWS]->copyFrom(sparseMat.getRows(), rowSize);
    intBufs_[PARAMETER_COLS]->copyFrom(sparseMat.getCols(), colSize);
    bufs_[PARAMETER_VALUE]->resize(nnz);  // for setMat check
    bufs_[PARAMETER_VALUE]->copyFrom(sparseMat.getValue(), nnz);
    config_.set_size(nnz);
    LOG(INFO) << "compact nnz=" << (1. * nnz / (height * width))
              << " name=" << config_.name();
  } else if (config_.is_sparse()) {
    CpuIVector rows(*intBufs_[PARAMETER_ROWS].get());
    CpuIVector cols(*intBufs_[PARAMETER_COLS].get());
    size_t rowSize, colSize;
    CHECK_EQ(config_.dims_size(), 2);
    if (format_ == SPARSE_CSR) {
      rowSize = config_.dims(0) + 1;
      colSize = config_.size();
    } else {
      rowSize = config_.size();
      colSize = config_.dims(1) + 1;
    }
    CHECK(
        s.read(reinterpret_cast<char*>(rows.getData()), rowSize * sizeof(int)));
    CHECK(
        s.read(reinterpret_cast<char*>(cols.getData()), colSize * sizeof(int)));
    auto & paramRows = *intBufs_[PARAMETER_ROWS].get();
    if (typeid(paramRows) == typeid(GpuIVector)) {
      intBufs_[PARAMETER_ROWS]->copyFrom(rows);
    }
    auto & paramCols = *intBufs_[PARAMETER_COLS].get();
    if (typeid(paramCols) == typeid(GpuIVector)) {
      intBufs_[PARAMETER_COLS]->copyFrom(cols);
    }
  }

  setValueUpdated();

  return true;
}

ThreadLocal<std::vector<VectorPtr>> Parameter::tlsTempBufs_;

VectorPtr* Parameter::getTlsTempBufs() {
  std::vector<VectorPtr>& bufs = *tlsTempBufs_;
  if (bufs.empty()) {
    bufs.resize(NUM_PARAMETER_TYPES);
    for (auto& vec : bufs) {
      vec.reset(new CpuVector(0, nullptr));
    }
  }
  return bufs.data();
}

void Parameter::exec(ExecFunc func) {
  auto execFunc = [this, func](int tid, size_t numThreads) {
    if (numThreads == 1) {  // single thread
      func(this->getBufs());
    } else {  // multi thread
      VectorPtr* vecs = Parameter::getTlsTempBufs();
      auto interval = calcSplitArrayInterval(this->getSize(), (size_t)tid,
                                             numThreads, 8LU /*for avx*/);
      for (size_t i = 0; i < (size_t)NUM_PARAMETER_TYPES; ++i) {
        if (bufs_[i]) {
          vecs[i]->subVecFrom(*bufs_[i], interval);
        }
      }
      func(vecs);
    }
  };

  getBuf(PARAMETER_VALUE)->exec(execFunc);
}

}  // namespace paddle