test_sparseMatrixCompare.cpp 5.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_ONLY_CPU
/// This unittest checks GpuSparseMatrix/CpuSparseMatrix get same result,
//  so disable when
/// only cpu version.

#include "paddle/utils/Util.h"
#include "paddle/math/Matrix.h"
#include "test_matrixUtil.h"
#include <gtest/gtest.h>

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

static inline int uniformRandom(int n) { return n == 0 ? 0 : rand() % n; }

void testSpMatrixAddBias(int M, int N, real rate, real scale) {
  int nnz = M * N * rate;

  MatrixPtr cpuA(new CpuSparseMatrix(M, N, nnz));
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(1, N);

  MatrixPtr gpuA(new GpuSparseMatrix(M, N, nnz));
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(1, N);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();

  hl_stream_t stream(HPPL_STREAM_1);
  gpuA->copyFrom(*cpuA, stream);
  gpuB->copyFrom(*cpuB, stream);
  hl_stream_synchronize(stream);

  cpuA->addBias(*cpuB, scale);
  gpuA->addBias(*gpuB, scale);

  MatrixPtr outputCheck(new CpuSparseMatrix(M, N, nnz));
  outputCheck->copyFrom(*gpuA, stream);
  hl_stream_synchronize(stream);
  checkSMatrixEqual2(std::dynamic_pointer_cast<CpuSparseMatrix>(cpuA),
                     std::dynamic_pointer_cast<CpuSparseMatrix>(outputCheck));
}

void testSpMatrixAddDense(int M, int N, real rate) {  // add3
  int nnz = M * N * rate;

  MatrixPtr cpuA(new CpuSparseMatrix(M, N, nnz));
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(M, N);

  MatrixPtr gpuA(new GpuSparseMatrix(M, N, nnz));
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(M, N);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();

  hl_stream_t stream(HPPL_STREAM_3);
  gpuA->copyFrom(*cpuA, stream);
  gpuB->copyFrom(*cpuB, stream);
  hl_stream_synchronize(stream);

  cpuA->add3(cpuB);
  gpuA->add3(gpuB);

  MatrixPtr outputCheck(new CpuSparseMatrix(M, N, nnz));
  outputCheck->copyFrom(*gpuA, stream);
  hl_stream_synchronize(stream);
  checkSMatrixEqual2(std::dynamic_pointer_cast<CpuSparseMatrix>(cpuA),
                     std::dynamic_pointer_cast<CpuSparseMatrix>(outputCheck));
}

void testSpMatrixMul(int M, int N, int K, real rate) {
  int nnz = M * N * rate;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(M, K);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(N, K);
  MatrixPtr cpuC(new CpuSparseMatrix(M, N, nnz));

  MatrixPtr gpuA = std::make_shared<GpuMatrix>(M, K);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(N, K);
  MatrixPtr gpuC(new GpuSparseMatrix(M, N, nnz));

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();

  hl_stream_t stream(HPPL_STREAM_3);
  gpuA->copyFrom(*cpuA, stream);
  gpuB->copyFrom(*cpuB, stream);
  gpuC->copyFrom(*cpuC, stream);
  hl_stream_synchronize(stream);

  cpuC->mul(cpuA, cpuB->getTranspose(), 1, 1);
  gpuC->mul(gpuA, gpuB->getTranspose(), 1, 1);

  MatrixPtr outputCheck(new CpuSparseMatrix(M, N, nnz));
  outputCheck->copyFrom(*gpuC, stream);
  hl_stream_synchronize(stream);
  checkSMatrixErr(std::dynamic_pointer_cast<CpuSparseMatrix>(cpuC),
                  std::dynamic_pointer_cast<CpuSparseMatrix>(outputCheck));
}

void testSpMatrixCollectBias(int M, int N, real rate) {
  int nnz = M * N * rate;
  LOG(INFO) << "nnz=" << nnz;

  MatrixPtr cpuA(new CpuSparseMatrix(M, N, nnz));
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(1, N);

  MatrixPtr gpuA(new GpuSparseMatrix(M, N, nnz));
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(1, N);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();

  hl_stream_t stream(HPPL_STREAM_3);
  gpuA->copyFrom(*cpuA, stream);
  gpuB->copyFrom(*cpuB, stream);
  hl_stream_synchronize(stream);

  cpuB->collectBias(*cpuA, 1);
  gpuB->collectBias(*gpuA, 1);

  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(1, N);
  outputCheck->copyFrom(*gpuB, stream);
  hl_stream_synchronize(stream);
  checkMatrixErr(*cpuB, *outputCheck);
}

TEST(SMatrix, sMatrixOp) {
  for (auto height : {1, 11, 200}) {
    for (auto width : {200, 2048, 20480}) {
      VLOG(3) << " height=" << height << " width=" << width;
      for (auto rate : {0.02, 0.1}) {
        testSpMatrixAddDense(height, width, rate);
        testSpMatrixAddBias(height, width, rate, 1.0);
      }
    }
  }
}

TEST(SMatrix, sMatrixMul) {
  for (auto M : {1, 40, 128, 200}) {
    for (auto N : {100, 2000, 20480}) {
      for (auto K : {100, 512, 1024}) {
        VLOG(3) << " M=" << M << " N=" << N << " K=" << K;;
        testSpMatrixMul(M, N, K, 0.05);
      }
    }
  }
}

TEST(SMatrix, sMatrixCollectBias) {
  for (auto height : {1, 128, 200}) {
    for (auto width : {100, 2048, 20480}) {
      VLOG(3) << " height=" << height << " width=" << width;
      testSpMatrixCollectBias(height, width, 0.1);
    }
  }
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  int ret = RUN_ALL_TESTS();
  return ret;
}

#endif