GruStepLayer.cpp 5.4 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "Layer.h"
#include "GruCompute.h"
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * @brief GruStepLayer is like GatedRecurrentLayer, but used in recurrent
 * layer group. GruStepLayer takes 2 input layer.
 * - input[0] with size * 3 and diveded into 3 equal parts: (xz_t, xr_t, xi_t).
 * - input[1] with size: {prev_out}.
 *
 * parameter and biasParameter is also diveded into 3 equal parts:
 * - parameter consists of (U_z, U_r, U)
 * - baisParameter consists of (bias_z, bias_r, bias_o)
 *
 * \f[
 * update \ gate: z_t = actGate(xz_t + U_z * prev_out + bias_z) \\
 * reset \ gate: r_t = actGate(xr_t + U_r * prev_out + bias_r)  \\
 * output \ candidate: {h}_t = actNode(xi_t + U * dot(r_t, prev_out) + bias_o) \\
 * output: h_t = dot((1-z_t), prev_out) + dot(z_t, prev_out)
 * \f]
 *
 * @note
 *   - dot denotes "element-wise multiplication".
 *   - actNode is defined by config active_type
 *   - actGate is defined by config actvie_gate_type
 *
 * The config file api if gru_step_layer.
 */
class GruStepLayer : public Layer, public GruCompute {
protected:
  Argument gate_;
  Argument resetOutput_;
  std::unique_ptr<Weight> weight_;
  std::unique_ptr<Weight> bias_;

public:
  explicit GruStepLayer(const LayerConfig& config) : Layer(config) {}

  ~GruStepLayer() {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);
  void backward(const UpdateCallback& callback = nullptr);
};

REGISTER_LAYER(gru_step, GruStepLayer);

bool GruStepLayer::init(const LayerMap& layerMap,
                        const ParameterMap& parameterMap) {
  if (!Layer::init(layerMap, parameterMap)) return false;
  CHECK_EQ(2U, inputLayers_.size());

  CHECK_EQ(getSize() * getSize() * 3, parameters_[0]->getSize());
  weight_.reset(new Weight(getSize(), getSize() * 3, parameters_[0]));

  if (biasParameter_.get() != NULL) {
    CHECK_EQ(getSize() * 3, biasParameter_->getSize());
    bias_.reset(new Weight(1, getSize() * 3, biasParameter_));
  }

  GruCompute::init(config_);
  return true;
}

void GruStepLayer::forward(PassType passType) {
  REGISTER_TIMER_INFO("GruStepFwTime", getName().c_str());
  Layer::forward(passType);

  const Argument& input = getInput(0);
  const Argument& prevOutput = getInput(1);
  CHECK_EQ(getSize() * 3, input.value->getWidth());
  CHECK_EQ(getSize(), prevOutput.value->getWidth());

  int batchSize = input.getBatchSize();
  resetOutput(batchSize, getSize());
  resetSpecifyOutput(gate_, batchSize, getSize() * 3,
                     /* isValueClean */ false, /* isGradClean */ false);
  resetSpecifyOutput(resetOutput_, batchSize, getSize(),
                     /* isValueClean */ false, /* isGradClean */ false);
  gate_.value->assign(*input.value);
  if (bias_) {
    gate_.value->addBias(*(bias_->getW()), 1);
  }

  hl_gru_value gruValue;
  gruValue.gateWeight = weight_->getW()->getData();
  gruValue.stateWeight = weight_->getW()->getData() + getSize() * getSize() * 2;
  gruValue.gateValue = gate_.value->getData();;
  gruValue.resetOutputValue = resetOutput_.value->getData();
  gruValue.outputValue = output_.value->getData();
  gruValue.prevOutValue = prevOutput.value->getData();

  if (useGpu_) {
    GruCompute::forward<1>(gruValue, getSize(), batchSize);
  } else {
    GruCompute::forward<0>(gruValue, getSize(), batchSize);
  }
}

void GruStepLayer::backward(const UpdateCallback& callback) {
  REGISTER_TIMER_INFO("GruStepBwTime", getName().c_str());

  const Argument& input = getInput(0);
  const Argument& prevOutput = getInput(1);
  int batchSize = input.getBatchSize();

  hl_gru_value gruValue;
  gruValue.gateWeight = weight_->getW()->getData();
  gruValue.stateWeight = weight_->getW()->getData() + getSize() * getSize() * 2;
  gruValue.gateValue = gate_.value->getData();;
  gruValue.resetOutputValue = resetOutput_.value->getData();
  gruValue.outputValue = output_.value->getData();
  gruValue.prevOutValue = prevOutput.value->getData();

  hl_gru_grad  gruGrad;
  gruGrad.gateWeightGrad =
    (weight_->getWGrad() ? weight_->getWGrad()->getData() : nullptr);
  gruGrad.stateWeightGrad =
    (weight_->getWGrad() ?
     weight_->getWGrad()->getData() + getSize() * getSize() * 2 : nullptr);

  gruGrad.gateGrad = gate_.grad->getData();
  gruGrad.resetOutputGrad = resetOutput_.grad->getData();
  gruGrad.outputGrad = output_.grad->getData();
  if (prevOutput.grad) {
    gruGrad.prevOutGrad = prevOutput.grad->getData();
  } else {
    gruGrad.prevOutGrad = nullptr;
  }

  if (useGpu_) {
    GruCompute::backward<1>(gruValue, gruGrad, getSize(), batchSize);
  } else {
    GruCompute::backward<0>(gruValue, gruGrad, getSize(), batchSize);
  }

  if (input.grad) {
    input.grad->add(*gate_.grad);
  }

  if (bias_ && bias_->getWGrad()) {
    bias_->getWGrad()->collectBias(*gate_.grad, 1);
  }

  if (bias_) {
    bias_->getParameterPtr()->incUpdate(callback);
  }
  weight_->getParameterPtr()->incUpdate(callback);
}

}  // namespace paddle