CudnnPoolLayer.cpp 3.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/math/Matrix.h"
#include "CudnnPoolLayer.h"

namespace paddle {

bool CudnnPoolLayer::typeCheck(const std::string &poolType,
                               hl_pooling_mode_t *mode) {
  if (poolType == "cudnn-max-pool") {
    if (mode) {
      *mode = HL_POOLING_MAX;
    }
  } else if (poolType == "cudnn-avg-pool") {
    if (mode) {
      *mode = HL_POOLING_AVERAGE;
    }
  } else if (poolType == "cudnn-avg-excl-pad-pool") {
    if (mode) {
      *mode = HL_POOLING_AVERAGE_EXCLUDE_PADDING;
    }
  } else {
    return false;
  }

  return true;
}

CudnnPoolLayer::CudnnPoolLayer(const LayerConfig &config) : PoolLayer(config) {
  const std::string &pool_type = config.inputs(0).pool_conf().pool_type();
  CHECK_EQ(CudnnPoolLayer::typeCheck(pool_type, &mode_), true);
}

bool CudnnPoolLayer::init(const LayerMap &layerMap,
                          const ParameterMap &parameterMap) {
  PoolLayer::init(layerMap, parameterMap);

  CHECK(useGpu_) << "CudnnPoolLayer only support gpu";

  hl_create_tensor_descriptor(&inputDesc_);
  hl_create_tensor_descriptor(&outputDesc_);

  windowHeight = sizeY_;
  windowWidth = sizeX_;
  heightPadding = confPaddingY_;
  widthPadding = confPadding_;
  strideHeight = strideY_;
  strideWidth = stride_;

64 65 66
  hl_create_pooling_descriptor(&poolingDesc_, mode_, windowHeight, windowWidth,
                               heightPadding, widthPadding, strideHeight,
                               strideWidth);
Z
zhangjinchao01 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

  return true;
}

void CudnnPoolLayer::reshape(int batchSize) {
  imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
  imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
  if (imageH_ == 0) {
    imageH_ = imgSizeY_;
  }
  if (imageW_ == 0) {
    imageW_ = imgSize_;
  }
  CHECK_EQ(inputLayers_[0]->getOutput().value->getWidth(),
           channels_ * imageH_ * imageW_);
82 83 84 85
  outputH_ = outputSize(imageH_, sizeY_, confPaddingY_, strideY_,
                        /* caffeMode */ false);
  outputW_ =
      outputSize(imageW_, sizeX_, confPadding_, stride_, /* caffeMode */ false);
Z
zhangjinchao01 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  getOutput().setFrameHeight(outputH_);
  getOutput().setFrameWidth(outputW_);

  hl_tensor_reshape(inputDesc_, batchSize, channels_, imageH_, imageW_);
  hl_tensor_reshape(outputDesc_, batchSize, channels_, outputH_, outputW_);
}

void CudnnPoolLayer::forward(PassType passType) {
  Layer::forward(passType);

  CHECK(inputLayers_[0]->getOutputValue()->useGpu());
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  reshape(batchSize);
  resetOutput(batchSize, outputH_ * outputW_ * channels_);

  real *inputData = getInputValue(0)->getData();
  real *outData = getOutputValue()->getData();
103
  hl_pooling_forward(inputDesc_, inputData, outputDesc_, outData, poolingDesc_);
Z
zhangjinchao01 已提交
104 105 106 107 108 109 110 111 112 113 114 115
}

void CudnnPoolLayer::backward(const UpdateCallback &callback) {
  (void)callback;
  if (NULL == getInputGrad(0)) {
    return;
  }

  real *inputData = getInputValue(0)->getData();
  real *inputGrad = getInputGrad(0)->getData();
  real *outData = getOutputValue()->getData();
  real *outGrad = getOutputGrad()->getData();
116 117
  hl_pooling_backward(inputDesc_, inputData, inputGrad, outputDesc_, outData,
                      outGrad, poolingDesc_);
Z
zhangjinchao01 已提交
118 119 120 121 122 123 124 125 126
}

CudnnPoolLayer::~CudnnPoolLayer() {
  hl_destroy_tensor_descriptor(inputDesc_);
  hl_destroy_tensor_descriptor(outputDesc_);
  hl_destroy_pooling_descriptor(poolingDesc_);
}

}  // namespace paddle