CostLayer.h 8.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <vector>
#include "Layer.h"

namespace paddle {

/**
 * Base class for a particular type of cost layer.
 * This type of cost should have one data layer, one label layer
 * and an optional weight layer as input.
 * The derived class should implemnt forwardImp() and backwardImp()
 * which calculate the cost for data and label. The weight is automatically
 * handled by the base class.
 */
class CostLayer : public Layer {
public:
  explicit CostLayer(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  LayerPtr getOutputLayer() { return inputLayers_[0]; }

  LayerPtr getLabelLayer() { return inputLayers_[1]; }

  virtual void forward(PassType passType);

  virtual void backward(const UpdateCallback& callback = nullptr);

  virtual void forwardImp(Matrix& outputValue, Argument& label,
                          Matrix& cost) = 0;

  virtual void backwardImp(Matrix& outputValue, Argument& label,
                           Matrix& outputGrad) = 0;

protected:
  LayerPtr weightLayer_;
  real coeff_;
};

56 57 58 59 60 61 62
/**
 * The cross-entropy loss for multi-class classification task.
 * The loss function is:
 *
 * \f[
 * L = - \sum_{i}{t_{k} * log(P(y=k))}
 * \f]
Z
zhangjinchao01 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75
 */
class MultiClassCrossEntropy : public CostLayer {
public:
  explicit MultiClassCrossEntropy(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};

76 77 78 79 80 81 82 83 84 85 86 87 88 89
/**
 * The cross-entropy with self-normalization for multi-class classification.
 *
 * The loss function is:
 * \f[
 * L = \sum_{i}[-log(P(x_{i})) + alpha * log(Z(x_{i})^2)]
 * \f]
 *
 * The \f$Z(x)\f$ is the softmax normalizer.
 *
 * [1] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar,
 *     Richard Schwartz, and John Makhoul. Fast and robust neural
 *     network joint models for statistical machine translation.
 *     In Proceedings of the ACL 2014 Conference.
Z
zhangjinchao01 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
 */
class MultiClassCrossEntropyWithSelfNorm : public CostLayer {
public:
  explicit MultiClassCrossEntropyWithSelfNorm(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);

protected:
  MatrixPtr sftMaxSum_;
  MatrixPtr sumInv_;
};

107 108 109 110 111
/**
 * The cross-entropy for soft binary class.
 * \f[
 * L = \sum_i (\sum_j -y_j(i)*log(x_j(i))-(1-y_j(i))*log(1-x_j(i)))
 * \f]
Z
zhangjinchao01 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
 */
class SoftBinaryClassCrossEntropy : public CostLayer {
public:
  explicit SoftBinaryClassCrossEntropy(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);

protected:
  MatrixPtr targetPerDim_;
};

128 129 130 131
/**
 * This cost layer compute Euclidean (L2) loss for real-valued regression
 * tasks.
 * \f[
X
xuwei06 已提交
132
 * L = \sum_{i=1}^N {|| \hat{y}_i - y_i||_2^2}
133 134
 * \f]
 */
Z
zhangjinchao01 已提交
135 136 137 138 139 140 141 142 143 144 145 146
class SumOfSquaresCostLayer : public CostLayer {
public:
  explicit SumOfSquaresCostLayer(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};

147 148 149 150 151 152 153 154 155 156 157
/**
 * A cost layer for learning to rank (LTR) task. This layer contains at leat
 * three inputs.
 * \f[
 *  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
 *  o_{i,j} =  o_i - o_j  \\
 *  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
 * \f]
 *
 * [1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to
 *      Rank useing Gradient Descent.
Z
zhangjinchao01 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
 */
class RankingCost : public Layer {
public:
  explicit RankingCost(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  LayerPtr getOutputLayer(size_t i) { return inputLayers_[i]; }

  LayerPtr getLabelLayer() { return inputLayers_[2]; }

  void forward(PassType passType);

  void backward(const UpdateCallback& callback = nullptr);

  void onPassEnd();

  void forwardImp(Matrix& output, Argument& label, Matrix& cost) {
    (void)output;
    (void)label;
    (void)cost;
  }

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad) {
    (void)outputValue;
    (void)label;
    (void)outputGrad;
  }

private:
  double posPairCount_;
  double negPairCount_;
  MatrixPtr margin_;
  MatrixPtr marginGrad_;
192
  /// if input label is put in ids (not value), copy to this buffer.
Z
zhangjinchao01 已提交
193 194 195 196
  MatrixPtr labelBuf_;
  LayerPtr weightLayer_;
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210
/**
 * LambdaRank os a method for learning arbitrary information retrieval
 * measures. It can be applied to any algorithm that learns through gradient
 * descent. LambdaRank is a listwise method, in that the cost depends on the
 * sorted order of the documents. LambdaRank gives the gradient of cost
 * function:
 *
 * \f[
 * \lambda_{ij} = \frac{1}{1 + e^{o_i - o_j}} \left| \Delta_{NDCG} \right|
 * \f]
 *
 * [1] Christopher J.C. Burges, Robert Ragno, Quoc Viet Le. Learning to Rank
 *     with Nonsmooth Cost Functions.
 */
Z
zhangjinchao01 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
class LambdaCost : public Layer {
public:
  explicit LambdaCost(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  LayerPtr getOutputLayer() { return inputLayers_[0]; }

  LayerPtr getScoreLayer() { return inputLayers_[1]; }

  void forward(PassType passType);

  void backward(const UpdateCallback& callback = nullptr);

  void onPassEnd();

  real calcNDCG(const real* outputScore, const real* score, int size);
  void calcGrad(const real* outputScore, const real* score, real* gradData,
                int size);

private:
  MatrixPtr marginGrad_;
  int truncationSize_;
  int maxSortSize_;
  std::vector<std::pair<real, int>> scorePair_;
  std::vector<std::pair<real, int>> outputScorePair_;
  std::vector<real> scoreVec_;
};

/**
241 242 243 244 245
 * Cross entropy for multi binary labels.
 * \f[
 * cost[i] = -sum(label[i][j]*log(output[i][j]) +
 *            (1-label[i][j])*log(1-output[i][j]))
 * \f]
Z
zhangjinchao01 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
 */
class MultiBinaryLabelCrossEntropy : public CostLayer {
protected:
  MatrixPtr targetPerDim_;

public:
  explicit MultiBinaryLabelCrossEntropy(const LayerConfig& config)
      : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};

262 263
/**
 * Huber loss for robust 2-classes classification.
Z
zhangjinchao01 已提交
264 265
 *
 * For label={0, 1}, let y=2*label-1. Given output f, the loss is:
266 267 268 269 270 271 272 273
 * \f[
 * Loss =
 * \left\{\begin{matrix}
 *  4 * y * f     &   \textit{if}  \ \  y* f < -1 \\
 *  (1 - y * f)^2 &  \textit{if}   \ \  -1 < y * f < 1  \\
 *  0             &                    \textit{otherwise}
 * \end{matrix}\right.
 * \f]
Z
zhangjinchao01 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
 */
class HuberTwoClass : public CostLayer {
  std::vector<Argument> tmpCpuInput_;
public:
  explicit HuberTwoClass(const LayerConfig& config) : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost);

  void forwardImpIn(Matrix& output, Argument& label, Matrix& cost);

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad);

  void backwardImpIn(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};

typedef std::shared_ptr<CostLayer> CostLayerPtr;
}  // namespace paddle