CTCLayer.cpp 4.1 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "CTCLayer.h"

/* Please reference the Chapter7  in
 * "Alex graves, Supervised Sequence Labelling with
 * Recurrent Neural Networks" */
namespace paddle {
REGISTER_LAYER(ctc, CTCLayer);

bool CTCLayer::init(const LayerMap& layerMap,
                    const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(inputLayers_.size(), 2UL);

  /* The inputLayers_[0] must be softmax output */
  numClasses_ = inputLayers_[0]->getSize();
  normByTimes_ = config_.norm_by_times();
  CHECK_GE(numClasses_, 2UL);

  // We don't need sequenceStartPositions because each sample of output_ is
  // for the cost of one sequence.
  setNeedSequenceInfo(false);
  if (useGpu_) {
    tmpCpuInput_.reserve(inputLayers_.size());
    for (size_t i = 0; i < inputLayers_.size(); i++) {
      tmpCpuInput_.push_back(Argument());
    }
  }
  return true;
}

void CTCLayer::forward(PassType passType) {
  Layer::forward(passType);
  if (useGpu_) {
    for (size_t i = 0; i < inputLayers_.size(); i++) {
52 53
      tmpCpuInput_[i].resizeAndCopyFrom(
          getInput(i), false, HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
54
    }
55
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    forwardImp(tmpCpuInput_[0], tmpCpuInput_[1]);
  } else {
    forwardImp(getInput(0), getInput(1));
  }
}

void CTCLayer::forwardImp(const Argument& softmaxSeqs,
                          const Argument& labelSeqs) {
  CHECK(softmaxSeqs.sequenceStartPositions);
  CHECK(labelSeqs.sequenceStartPositions);
  CHECK(labelSeqs.ids);

  size_t numSequences = labelSeqs.sequenceStartPositions->getSize() - 1;
  CHECK_EQ(numSequences, softmaxSeqs.sequenceStartPositions->getSize() - 1);

  resizeOutput(numSequences, 1);
  std::vector<real> out(numSequences);

  const int* labelSeqsStarts =
      labelSeqs.sequenceStartPositions->getData(false);
  const int* softmaxSeqsStarts =
      softmaxSeqs.sequenceStartPositions->getData(false);

  for (size_t i = 0; i < numSequences; i++) {
    if (i >= ctcs_.size()) {
      ctcs_.emplace_back(numClasses_, normByTimes_);
    }
    out[i] = ctcs_[i].forward(
            softmaxSeqs.value->getData() + numClasses_ * softmaxSeqsStarts[i],
            softmaxSeqsStarts[i + 1] - softmaxSeqsStarts[i],
            labelSeqs.ids->getData() + labelSeqsStarts[i],
            labelSeqsStarts[i + 1] - labelSeqsStarts[i]);
  }
  output_.value->copyFrom(out.data(), numSequences);
}

void CTCLayer::backward(const UpdateCallback &callback) {
  (void)callback;
  if (useGpu_) {
    backwardImp(callback, tmpCpuInput_[0], tmpCpuInput_[1]);
    const_cast<Argument&>(getInput(0)).
97
            resizeAndCopyFrom(tmpCpuInput_[0], true, HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
98
    const_cast<Argument&>(getInput(1)).
99
            resizeAndCopyFrom(tmpCpuInput_[1], true, HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  } else {
    backwardImp(callback, getInput(0), getInput(1));
  }
}

void CTCLayer::backwardImp(const UpdateCallback& callback,
                           const Argument& softmaxSeqs,
                           const Argument& labelSeqs) {
  size_t numSequences = labelSeqs.sequenceStartPositions->getSize() - 1;

  const int* labelSeqsStarts =
      labelSeqs.sequenceStartPositions->getData(false);
  const int* softmaxSeqsStarts =
      softmaxSeqs.sequenceStartPositions->getData(false);

  for (size_t i = 0; i < numSequences; ++i) {
    ctcs_[i].backward(
        softmaxSeqs.value->getData() + numClasses_ * softmaxSeqsStarts[i],
        softmaxSeqs.grad->getData() + numClasses_ * softmaxSeqsStarts[i],
        labelSeqs.ids->getData() + labelSeqsStarts[i],
        labelSeqsStarts[i + 1] - labelSeqsStarts[i]);
  }
}

}  // namespace paddle