AverageLayer.cpp 3.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "AverageLayer.h"

#include "paddle/utils/Logging.h"

#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(average, AverageLayer);

bool AverageLayer::init(const LayerMap& layerMap,
                        const ParameterMap& parameterMap) {
27
  SequencePoolLayer::init(layerMap, parameterMap);
Z
zhangjinchao01 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

  dataMtx_ = Matrix::create(nullptr, 1, 1, false, useGpu_);
  outMtx_ = Matrix::create(nullptr, 1, getSize(), false, useGpu_);
  // average strategy
  if (config_.average_strategy() == "average") {
    mode_ = kAverage;
  } else if (config_.average_strategy() == "sum") {
    mode_ = kSum;
  } else if (config_.average_strategy() == "squarerootn") {
    mode_ = kAverageSquareRootN;
  } else {
    LOG(FATAL) << "Unknown average strategy: " << config_.average_strategy();
  }
  return true;
}

void AverageLayer::forward(PassType passType) {
45
  SequencePoolLayer::forward(passType);
Z
zhangjinchao01 已提交
46 47

  MatrixPtr inputValue = getInputValue(0);
48 49
  getOutputValue()->sequenceAvgForward(
      *inputValue, *startPositions_->getVector(useGpu_), mode_);
Z
zhangjinchao01 已提交
50 51 52 53 54 55 56 57 58 59 60

  /* add the bias-vector AFTER average operation */
  if (biases_.get() != NULL) {
    MatrixPtr outV = getOutputValue();
    outV->addBias(*(biases_->getW()), 1);
  }

  /* activation */ { forwardActivation(); }
}

void AverageLayer::backward(const UpdateCallback& callback) {
61
  SequencePoolLayer::backward(callback);
Z
zhangjinchao01 已提交
62

63
  const int* starts = startPositions_->getData(false);
Z
zhangjinchao01 已提交
64
  MatrixPtr grad = getInputGrad(0);
65

Z
zhangjinchao01 已提交
66 67 68 69
  if (grad) {
    size_t dim = getSize();
    real* gradientData = getInputGrad(0)->getData();
    real* gradient = getOutputGrad()->getData();
70
    size_t numSequences = startPositions_->getSize() - 1;
Z
zhangjinchao01 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    for (size_t sequenceId = 0; sequenceId < numSequences; ++sequenceId) {
      // TODO(Dangqingqing) optimization for GPU
      int sequenceLength = starts[sequenceId + 1] - starts[sequenceId];
      if (0 == sequenceLength) {
        // empty sequence
        continue;
      }
      dataMtx_->setData(gradientData + starts[sequenceId] * dim, sequenceLength,
                        dim);
      outMtx_->setData(gradient + sequenceId * dim);
      switch (mode_) {
        case kAverage: {
          // plain average
          dataMtx_->addBias(*outMtx_, 1.0f / sequenceLength);
          break;
        }
        case kSum: {
          // sum instead of average
          dataMtx_->addBias(*outMtx_, 1.0f);
          break;
        }
        case kAverageSquareRootN: {
          // divide by square root of sequenceLength
          dataMtx_->addBias(*outMtx_, 1.0f / sqrt(sequenceLength));
          break;
        }
        default: { LOG(FATAL) << "should not reach here"; }
      }
    }
  }
}

}  // namespace paddle