convolution_grad_kernel.cu 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "glog/logging.h"
16 17 18 19 20
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
21
#include "paddle/phi/kernels/copy_kernel.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
#include "paddle/phi/kernels/sparse/gpu/convolution.cu.h"

namespace phi {
namespace sparse {

// rulebook[3, rulebook_len]:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
template <typename T, typename Context>
void Conv3dGradKernel(const Context& dev_ctx,
                      const SparseCooTensor& x,
                      const DenseTensor& kernel,
42 43
                      const DenseTensor& rulebook,
                      const SparseCooTensor& out_grad,
44 45 46 47
                      const std::vector<int>& paddings,
                      const std::vector<int>& dilations,
                      const std::vector<int>& strides,
                      const int groups,
Z
zhangkaihuo 已提交
48
                      const bool subm,
49
                      SparseCooTensor* x_grad,
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
                      DenseTensor* kernel_grad) {
  const auto& kernel_dims = kernel.dims();
  const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];
  const int* rulebook_ptr = rulebook.data<int>();

  const int rulebook_len = rulebook.dims()[1];

  DenseTensorMeta in_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta d_x_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta out_grad_features_meta(
      x.dtype(), {rulebook_len, out_channels}, DataLayout::NCHW);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor d_x_features =
      phi::Empty(dev_ctx, std::move(d_x_features_meta));
  phi::DenseTensor out_grad_features =
      phi::Empty(dev_ctx, std::move(out_grad_features_meta));

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
75
  *kernel_grad = phi::EmptyLike<T>(dev_ctx, kernel);
76 77 78 79
  T* d_kernel_ptr = kernel_grad->data<T>();
  phi::funcs::SetConstant<Context, T> set_zero;
  set_zero(dev_ctx, kernel_grad, static_cast<T>(0.0f));

Z
zhangkaihuo 已提交
80
  int half_kernel_size = kernel_size / 2;
81
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
82 83 84 85 86
  DenseTensor x_grad_indices =
      phi::EmptyLike<int>(dev_ctx, x.non_zero_indices());
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
  T* x_grad_values_ptr = x_grad_values.data<T>();
  set_zero(dev_ctx, &x_grad_values, static_cast<T>(0.0f));
Z
zhangkaihuo 已提交
87
  set_zero(dev_ctx, &d_x_features, static_cast<T>(0.0f));
88 89 90 91 92 93
  phi::Copy<Context>(dev_ctx,
                     x.non_zero_indices(),
                     dev_ctx.GetPlace(),
                     false,
                     &x_grad_indices);
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
Z
zhangkaihuo 已提交
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  std::vector<int> offsets(kernel_size + 1), counter(kernel_size, 0),
      h_counter(rulebook_len, 0);
  phi::backends::gpu::GpuMemcpyAsync(&h_counter[0],
                                     rulebook_ptr,
                                     rulebook_len * sizeof(int),
#ifdef PADDLE_WITH_HIP
                                     hipMemcpyDeviceToHost,
#else
                                     cudaMemcpyDeviceToHost,
#endif

                                     dev_ctx.stream());
  dev_ctx.Wait();

  for (int i = 0; i < rulebook_len; i++) {
    counter[h_counter[i]] += 1;
  }
Z
zhangkaihuo 已提交
112
  int offset = 0, max_count = 0;
113 114 115
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
    offset += counter[i];
Z
zhangkaihuo 已提交
116 117 118
    if (i < half_kernel_size) {
      max_count = std::max(max_count, counter[i]);
    }
119 120 121
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
122
  if (subm) {
123 124 125
    phi::funcs::sparse::SubmPreProcess<T, Context>(dev_ctx,
                                                   x,
                                                   kernel,
126
                                                   out_grad.non_zero_elements(),
127 128 129 130
                                                   in_channels,
                                                   out_channels,
                                                   half_kernel_size,
                                                   kernel_grad,
131
                                                   &x_grad_values);
Z
zhangkaihuo 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    if (max_count == 0) {
      return;
    }
  }

  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, rulebook_len * in_channels, 1);
  GatherKernel<T, int><<<config.block_per_grid.x,
                         config.thread_per_block.x,
                         0,
                         dev_ctx.stream()>>>(x.non_zero_elements().data<T>(),
                                             rulebook_ptr + rulebook_len,
                                             in_features_ptr,
                                             rulebook_len,
                                             in_channels);

  config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, rulebook_len * out_channels, 1);
  GatherKernel<T, int><<<config.block_per_grid.x,
                         config.thread_per_block.x,
                         0,
153 154 155 156 157 158
                         dev_ctx.stream()>>>(
      out_grad.non_zero_elements().data<T>(),
      rulebook_ptr + rulebook_len * 2,
      out_grad_features_ptr,
      rulebook_len,
      out_channels);
Z
zhangkaihuo 已提交
159

160 161
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
Z
zhangkaihuo 已提交
162
    if (counter[i] <= 0 || (subm && i == half_kernel_size)) {
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
      continue;
    }

    const int M = counter[i];
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * out_channels;
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

    // call gemm: d_kernel = transpose(x) * out_grad
    // (in_channels, n) * (n, out_channels)
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_out_grad_ptr,
              static_cast<T>(0),
              tmp_d_kernel_ptr);

    // call gemm: d_x = out_grad * transpose(kernel)
    // (n, out_channels) * (out_channels, in_channels)
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              M,
              K,
              N,
              static_cast<T>(1),
              tmp_out_grad_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_d_x_ptr);
  }

  // 4. scatter
203
  // x_grad->ResizeAndAllocate(x.non_zero_elements().dims());
Z
zhangkaihuo 已提交
204 205 206 207
  DenseTensorMeta index_meta(DataType::INT32, {rulebook_len}, DataLayout::NCHW);
  DenseTensor out_index = phi::Empty(dev_ctx, std::move(index_meta));
  DenseTensor unique_key = phi::Empty(dev_ctx, std::move(index_meta));
  DenseTensor unique_value = phi::Empty(dev_ctx, std::move(index_meta));
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

  SortedAndUniqueIndex(dev_ctx,
                       rulebook_ptr + rulebook_len,
                       rulebook_len,
                       &out_index,
                       &unique_key,
                       &unique_value);

  config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, rulebook_len * in_channels, 1);

  ScatterKernel<T><<<config.block_per_grid.x,
                     config.thread_per_block.x,
                     0,
                     dev_ctx.stream()>>>(d_x_features_ptr,
                                         unique_value.data<int>(),
                                         out_index.data<int>(),
                                         x.nnz(),
                                         rulebook_len,
                                         in_channels,
Z
zhangkaihuo 已提交
228 229
                                         x_grad_values_ptr,
                                         subm);
230 231 232 233 234 235 236 237 238 239 240 241 242 243
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(sparse_conv3d_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::Conv3dGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}