top_k_op_xpu.cc 3.5 KB
Newer Older
H
houj04 已提交
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include <memory>

#include "paddle/fluid/operators/top_k_op.h"
H
houj04 已提交
20
#include "paddle/fluid/platform/device/device_wrapper.h"
21 22 23 24 25 26 27 28
#include "xpu/refactor/math.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T>
class TopkXPUKernel : public framework::OpKernel<T> {
H
houj04 已提交
29 30
  using XPUType = typename XPUTypeTrait<T>::Type;

31 32 33
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    // Get the top k elements of each row of input tensor
H
houj04 已提交
34
    const auto* input = ctx.Input<Tensor>("X");
35 36 37
    auto* output = ctx.Output<Tensor>("Out");
    auto* indices = ctx.Output<Tensor>("Indices");

H
houj04 已提交
38 39 40 41
    // get k from attr
    int k = static_cast<int>(ctx.Attr<int>("k"));

    // get k from input tensor
42 43
    auto* k_t = ctx.Input<Tensor>("K");
    if (k_t) {
H
houj04 已提交
44 45 46 47 48
      memory::Copy(platform::CPUPlace(),
                   static_cast<void*>(&k),
                   ctx.GetPlace(),
                   static_cast<const void*>(k_t->data<int>()),
                   sizeof(int));
49 50 51 52 53 54 55 56
      framework::DDim output_dims = output->dims();
      output_dims[output_dims.size() - 1] = k;
      output->Resize(output_dims);
      indices->Resize(output_dims);
    }

    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
H
houj04 已提交
57 58 59 60 61 62 63

    auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
    // allocate temp memory for int32 index
    xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
    int* indices_int_data = RAII_GUARD.alloc_l3_or_gm<int>(indices->numel());
    PADDLE_ENFORCE_XDNN_NOT_NULL(indices_int_data);

64 65
    // reshape input to a flattern matrix(like flat_inner_dims)
    framework::DDim inputdims = input->dims();
66
    const size_t row =
67
        phi::product(phi::slice_ddim(inputdims, 0, inputdims.size() - 1));
68 69
    const size_t col = inputdims[inputdims.size() - 1];

H
houj04 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    // int sorted_topk(Context* ctx, const T* x, T* y, int* index, int m, int n,
    // int k, bool largest = true);
    int r = xpu::sorted_topk(dev_ctx.x_context(),
                             reinterpret_cast<const XPUType*>(input->data<T>()),
                             reinterpret_cast<XPUType*>(output_data),
                             indices_int_data,
                             row,
                             col,
                             k);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "sorted_topk");

    // cast to int64 as final result
    r = xpu::cast_v2<int32_t, int64_t>(dev_ctx.x_context(),
                                       (const int32_t*)indices_int_data,
                                       indices_data,
                                       indices->numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast_v2");
87 88 89 90 91 92 93
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
houj04 已提交
94 95 96
REGISTER_OP_XPU_KERNEL(top_k,
                       ops::TopkXPUKernel<float>,
                       ops::TopkXPUKernel<paddle::platform::float16>);
97
#endif