scale.cc 5.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/arm/math/scale.h"
#include "paddle/fluid/lite/arm/math/funcs.h"

namespace paddle {
namespace lite {
namespace arm {
namespace math {

template <>
void scale<float>(const float* din, float* dout, int num, float scale,
                  float bias) {
  int cnt = num >> 4;
  int remain = num % 16;
  float32x4_t vscale = vdupq_n_f32(scale);
  float32x4_t vbias = vdupq_n_f32(bias);
#pragma omp parallel for
  for (int i = 0; i < cnt; i++) {
    const float* din_ptr = din + (i << 4);
    float* dout_ptr = dout + (i << 4);

    float32x4_t din0 = vld1q_f32(din_ptr);
    float32x4_t din1 = vld1q_f32(din_ptr + 4);
    float32x4_t din2 = vld1q_f32(din_ptr + 8);
    float32x4_t din3 = vld1q_f32(din_ptr + 12);

    float32x4_t vsum1 = vmlaq_f32(vbias, din0, vscale);
    float32x4_t vsum2 = vmlaq_f32(vbias, din1, vscale);
    float32x4_t vsum3 = vmlaq_f32(vbias, din2, vscale);
    float32x4_t vsum4 = vmlaq_f32(vbias, din3, vscale);

    vst1q_f32(dout_ptr, vsum1);
    vst1q_f32(dout_ptr + 4, vsum2);
    vst1q_f32(dout_ptr + 8, vsum3);
    vst1q_f32(dout_ptr + 12, vsum4);
  }
  if (remain > 0) {
    const float* din_ptr = din + (cnt << 4);
    float* dout_ptr = dout + (cnt << 4);
    for (int i = 0; i < remain; i++) {
      *dout_ptr = *din_ptr * scale + bias;
      dout_ptr++;
      din_ptr++;
    }
  }
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
template <>
void scale<float>(const float* din, float* dout, int outer_dim, int scale_dim,
                  int inner_dim, const float* scale_data,
                  const float* bias_data) {
  int cnt = inner_dim >> 4;
  int remain = inner_dim % 16;
  int size = inner_dim * scale_dim;
  for (int n = 0; n < outer_dim; n++) {
    const float* din_ptr_n = din + n * size;
    float* dout_ptr_n = dout + n * size;
#pragma omp parallel for
    for (int i = 0; i < scale_dim; i++) {
      const float* din_ptr = din_ptr_n + i * inner_dim;
      float* dout_ptr = dout_ptr_n + i * inner_dim;
      float scale = scale_data[i];
      float32x4_t vscale = vdupq_n_f32(scale);
      float bias = bias_data[i];
      float32x4_t vbias = vdupq_n_f32(bias);
      for (int j = 0; j < cnt; j++) {
        float32x4_t din0 = vld1q_f32(din_ptr);
        float32x4_t din1 = vld1q_f32(din_ptr + 4);
        float32x4_t din2 = vld1q_f32(din_ptr + 8);
        float32x4_t din3 = vld1q_f32(din_ptr + 12);

        float32x4_t vsum1 = vmlaq_f32(vbias, din0, vscale);
        float32x4_t vsum2 = vmlaq_f32(vbias, din1, vscale);
        float32x4_t vsum3 = vmlaq_f32(vbias, din2, vscale);
        float32x4_t vsum4 = vmlaq_f32(vbias, din3, vscale);

        din_ptr += 16;
        vst1q_f32(dout_ptr, vsum1);
        vst1q_f32(dout_ptr + 4, vsum2);
        vst1q_f32(dout_ptr + 8, vsum3);
        vst1q_f32(dout_ptr + 12, vsum4);

        dout_ptr += 16;
      }
      for (int j = 0; j < remain; j++) {
        *dout_ptr = *din_ptr * scale + bias;
        dout_ptr++;
        din_ptr++;
      }
    }
  }
}

template <>
void scale<float>(const float* din, float* dout, int outer_dim, int scale_dim,
                  const float* scale_data, const float* bias_data) {
  int cnt = scale_dim >> 4;
  int remain = scale_dim % 16;
  for (int n = 0; n < outer_dim; n++) {
    const float* din_ptr_n = din + n * scale_dim;
    float* dout_ptr_n = dout + n * scale_dim;
#pragma omp parallel for
    for (int i = 0; i < cnt; i++) {
      int idx = i << 4;
      const float* din_ptr = din_ptr_n + idx;
      const float* scale_ptr = scale_data + idx;
      const float* bias_ptr = bias_data + idx;
      float* dout_ptr = dout_ptr_n + idx;

      float32x4_t din0 = vld1q_f32(din_ptr);
      float32x4_t vscale0 = vld1q_f32(scale_ptr);
      float32x4_t vbias0 = vld1q_f32(bias_ptr);

      float32x4_t din1 = vld1q_f32(din_ptr + 4);
      float32x4_t vscale1 = vld1q_f32(scale_ptr + 4);
      float32x4_t vbias1 = vld1q_f32(bias_ptr + 4);

      float32x4_t din2 = vld1q_f32(din_ptr + 8);
      float32x4_t vscale2 = vld1q_f32(scale_ptr + 8);
      float32x4_t vbias2 = vld1q_f32(bias_ptr + 8);

      float32x4_t vsum1 = vmlaq_f32(vbias0, din0, vscale0);
      float32x4_t vsum2 = vmlaq_f32(vbias1, din1, vscale1);

      float32x4_t din3 = vld1q_f32(din_ptr + 12);
      float32x4_t vscale3 = vld1q_f32(scale_ptr + 12);
      float32x4_t vbias3 = vld1q_f32(bias_ptr + 12);

      vst1q_f32(dout_ptr, vsum1);
      vst1q_f32(dout_ptr + 4, vsum2);

      float32x4_t vsum3 = vmlaq_f32(vbias2, din2, vscale2);
      float32x4_t vsum4 = vmlaq_f32(vbias3, din3, vscale3);

      vst1q_f32(dout_ptr + 8, vsum3);
      vst1q_f32(dout_ptr + 12, vsum4);
    }
    int idx = cnt << 4;
    const float* din_ptr = din_ptr_n + idx;
    float* dout_ptr = dout_ptr_n + idx;
    const float* scale_ptr = scale_data + idx;
    const float* bias_ptr = bias_data + idx;
    for (int j = 0; j < remain; j++) {
      *dout_ptr = *din_ptr * (*scale_ptr) + (*bias_ptr);
      dout_ptr++;
      din_ptr++;
      scale_ptr++;
      bias_ptr++;
    }
  }
}

T
tensor-tang 已提交
166 167 168 169
}  // namespace math
}  // namespace arm
}  // namespace lite
}  // namespace paddle