layers.py 68.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23
import copy
import weakref
import warnings
24
from copy import deepcopy
25 26
import inspect

27
import paddle
C
chenjian 已提交
28
import paddle.profiler as profiler
29
from paddle.profiler.utils import in_profiler_mode
30

C
chengduo 已提交
31
from . import parallel_helper
X
Xin Pan 已提交
32
from .. import unique_name
33
from paddle.fluid import core
34
from .layer_object_helper import LayerObjectHelper
35
from .layer_hooks import record_program_ops_pre_hook, set_op_customized_attrs_post_hook, LayerOpsRecoder
36
from .base import program_desc_tracing_guard, param_guard, in_declarative_mode, _convert_into_variable
37
from paddle.fluid import framework
38
from ..param_attr import ParamAttr
39
from paddle.fluid.executor import Executor, global_scope
40
from paddle.fluid.framework import _non_static_mode, convert_np_dtype_to_dtype_, in_dygraph_mode
41
from paddle.fluid.framework import Program, program_guard
42
from paddle.fluid.framework import _current_expected_place as _get_device
43
from paddle.fluid.core import VarDesc
C
chentianyu03 已提交
44
from paddle.fluid.dygraph import no_grad
W
wanghuancoder 已提交
45
import paddle.utils.deprecated as deprecated
46

47
__all__ = ['Layer']
48

49 50 51 52 53 54 55 56
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

57

58 59 60 61 62 63 64 65 66 67 68
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


J
Jiabin Yang 已提交
85
class Layer(object):
86 87
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
88

89
    Parameters:
90 91
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
92 93 94
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
95
        dtype(str, optional): data type of this parameter.
96 97
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
98
                Default: "float32"
99

100 101
    Returns:
        None
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    Examples:
        .. code-block:: python

            import paddle
            class MyLayer(paddle.nn.Layer):
                def __init__(self):
                    super(MyLayer, self).__init__()
                    self._linear = paddle.nn.Linear(1, 1)
                    self._dropout = paddle.nn.Dropout(p=0.5)
                def forward(self, input):
                    temp = self._linear(input)
                    temp = self._dropout(temp)
                    return temp
            x = paddle.randn([10, 1], 'float32')
            mylayer = MyLayer()
            mylayer.eval()  # set mylayer._dropout to eval mode
            out = mylayer(x)
            mylayer.train()  # set mylayer._dropout to train mode
            out = mylayer(x)
X
Xin Pan 已提交
122
    """
X
Xin Pan 已提交
123

124
    def __init__(self, name_scope=None, dtype="float32"):
125
        self.training = True
126
        if name_scope is None:
127 128
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
129
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
130
        self._built = False
M
minqiyang 已提交
131
        self._dtype = dtype
J
Jiabin Yang 已提交
132
        self._init_in_dynamic_mode = framework._non_static_mode()
133

X
Xin Pan 已提交
134
        self._parameters = collections.OrderedDict()
135 136 137
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
138
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
139
        self._loaddict_holder = collections.OrderedDict()
140

141 142 143 144
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

145 146 147
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

148 149 150
        self._casted_by_pure_fp16 = False

        self._state_dict_hooks = collections.OrderedDict()
151 152
        # Records orignal functions after @to_static to support to rollback
        self._original_funcs = collections.OrderedDict()
153

M
minqiyang 已提交
154
    def train(self):
155 156 157 158 159 160
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

185
        """
186 187 188
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
189
        if _non_static_mode():
190
            framework._dygraph_tracer().train_mode()
191 192 193
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
194
            layer.training = True
M
minqiyang 已提交
195 196

    def eval(self):
197 198 199 200 201 202
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

226
        """
227 228 229
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
230
        if _non_static_mode():
231
            framework._dygraph_tracer().eval_mode()
232 233 234
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
235
            layer.training = False
M
minqiyang 已提交
236

L
LielinJiang 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
253

L
LielinJiang 已提交
254 255 256 257 258
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
259
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
260 261 262 263 264 265 266
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
267
        for layer in self.children():
L
LielinJiang 已提交
268 269 270 271 272 273
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
274
    def full_name(self):
275
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
276

277 278
        Returns:
            str: full name of this layer.
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
296 297 298
        """
        return self._full_name

299 300 301 302 303
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
304

305 306 307 308 309 310 311 312 313 314 315
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

316 317 318 319 320 321
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
322

323 324
                    # change the output
                    return output * 2
325

326
                linear = paddle.nn.Linear(13, 5)
327

328 329
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
330

331 332
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
333

334
                out0 = linear(in1)
335

336 337 338 339 340 341 342
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
343 344 345 346 347 348 349
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
350

351
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
352
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if
353 354 355 356 357 358 359 360 361 362 363 364 365 366
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

367 368
                import paddle
                import numpy as np
369

370
                # the forward_pre_hook change the input of the layer: input = input * 2
371 372
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
373

374 375 376
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
377

378
                linear = paddle.nn.Linear(13, 5)
379

380 381
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
382

383 384 385
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
386

387 388
                # remove the hook
                forward_pre_hook_handle.remove()
389

390 391 392
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
393

394 395
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
396 397 398 399 400
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

401 402
    def create_parameter(self,
                         shape,
403
                         attr=None,
404
                         dtype=None,
405 406
                         is_bias=False,
                         default_initializer=None):
407
        """Create parameters for this layer.
408

409
        Parameters:
410
            shape(list): Shape of the parameter.
411 412
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
413
                If set str, it can be "bool",  "float16", "float32", "float64",
414 415
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
416
            default_initializer(Initializer, optional): the default initializer for this parameter.
417
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
418
                for non-bias and bias parameter, respectively. Default: None.
419

420
        Returns:
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

442
        """
H
hong 已提交
443 444 445 446
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
447 448
                                             default_initializer)

449 450 451
    @deprecated(since="2.0.0",
                update_to="paddle.nn.Layer.create_tensor",
                reason="New api in create_tensor, easier to use.")
452
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
453 454 455
        """

        Create Tensor for this layer.
456

457
        Parameters:
W
wanghuancoder 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
478

W
wanghuancoder 已提交
479
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
480

W
wanghuancoder 已提交
481 482 483
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
484

W
wanghuancoder 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
509
            dtype(str, optional): data type of this parameter.
510 511
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
512
                If set None, it will be "float32". Default: None
513

514
        Returns:
W
wanghuancoder 已提交
515
            Tensor, created Tensor.
516 517 518 519 520 521 522 523 524 525 526 527

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
528

W
wanghuancoder 已提交
529
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
530

531 532 533
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
534

535 536
                        return out

537 538 539 540 541 542 543 544
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
545 546 547 548
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)
549

X
polish  
Xin Pan 已提交
550
    def parameters(self, include_sublayers=True):
551
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
552

553
        Returns:
554 555 556 557 558 559 560 561 562 563
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
564
        """
565
        ret = [
566
            param for _, param in self.named_parameters(
567 568
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
569
        return ret
X
Xin Pan 已提交
570

571 572 573 574 575 576 577 578 579
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

580
                import paddle
581

582 583 584 585 586
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
587

588
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

604
                import paddle
605

606 607 608 609 610 611 612
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
613 614 615 616 617 618 619 620

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
621
    def sublayers(self, include_self=False):
X
Xin Pan 已提交
622 623
        """Returns a list of sub layers.

624
        Parameters:
J
Jiabin Yang 已提交
625
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
626

627 628
        Returns:
            list of Layer : a list of sub layers.
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
649
        """
650 651
        ret = [
            layer
J
Jiabin Yang 已提交
652
            for _, layer in self.named_sublayers(include_self=include_self)
653
        ]
X
Xin Pan 已提交
654 655
        return ret

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

671
                import paddle
672

673 674 675 676 677
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
678 679 680 681

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
682 683
            prefix=prefix, include_self=True) if include_sublayers else zip(
                [prefix], [self])
684 685 686 687 688 689 690 691 692
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
693
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
694 695 696 697 698 699 700
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
701
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
702 703 704 705 706 707 708

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

709
                import paddle
710

711 712 713 714 715
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
716 717 718 719 720 721 722

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
723 724 725 726
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
727 728 729
            for p, l in layer.named_sublayers(prefix=layer_prefix,
                                              include_self=True,
                                              layers_set=layers_set):
J
Jiabin Yang 已提交
730
                yield p, l
731

732
    def register_buffer(self, name, tensor, persistable=True):
733
        """
734
        Registers a tensor as buffer into the layer.
735

736
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
737 738 739 740 741 742 743 744 745 746
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
747
            tensor (Tensor): the tensor to be registered as buffer.
748 749 750 751 752
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
753

754 755 756 757
        Examples:
            .. code-block:: python

                import numpy as np
758
                import paddle
759

760 761 762 763 764 765 766
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
767 768 769 770 771 772 773 774 775 776 777

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
778 779 780 781
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
782 783 784 785
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
786 787
        elif tensor is not None and not (type(tensor) == core.VarBase
                                         or type(tensor) == core.eager.Tensor):
788
            raise TypeError(
789 790
                "The registered buffer should be a Paddle.Tensor, but received {}."
                .format(type(tensor).__name__))
791
        else:
792
            self._buffers[name] = tensor
793 794 795 796 797 798 799 800 801 802 803 804 805
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

821 822
        """
        ret = [
823
            buffer for _, buffer in self.named_buffers(
824 825 826 827 828 829
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
830
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
831 832 833 834 835 836 837

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
838
            (string, Tensor): Tuple of name and tensor
839 840 841 842 843

        Examples:
            .. code-block:: python

                import numpy as np
844
                import paddle
845

846 847 848 849
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
850

851 852 853 854 855
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
856

857
                model = paddle.nn.Sequential(fc1, fc2)
858

859 860 861
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
862 863 864 865

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
866 867
            prefix=prefix, include_self=True) if include_sublayers else zip(
                [prefix], [self])
868 869 870 871 872 873 874 875 876
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
877
    def clear_gradients(self):
878 879
        """
        Clear the gradients of all parameters for this layer.
880

881 882
        Returns:
            None
883

884 885 886
        Examples:
            .. code-block:: python

887
                import paddle
888 889
                import numpy as np

890 891 892 893 894 895 896 897 898
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
899 900

        """
X
Xin Pan 已提交
901
        for p in self.parameters():
902 903
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
904

905
    def _build_once(self, *args, **kwargs):
906 907
        pass

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
    def _dygraph_call_func(self, *inputs, **kwargs):
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

        if not self._built:
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)

                # TODO(liuyuhui) Only xpu broadcast parameters here.
                # The other device is to call _sync_params_buffers in DataParallel
                # to realize the parameter synchronization among multiply cards.
                if parallel_helper._is_data_parallel_mode(
                ) and paddle.is_compiled_with_xpu():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())

            self._built = True

930
        if in_profiler_mode():
931
            with profiler.RecordEvent(self.__class__.__name__,
932 933 934
                                      profiler.TracerEventType.Forward):
                outputs = self.forward(*inputs, **kwargs)
        else:
C
chenjian 已提交
935
            outputs = self.forward(*inputs, **kwargs)
936 937 938 939 940 941 942 943

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

        return outputs

944
    def __call__(self, *inputs, **kwargs):
945
        if (not in_declarative_mode()) and (not self._forward_pre_hooks) \
946
            and (not self._forward_post_hooks) and (not self._built) and in_dygraph_mode() and (not in_profiler_mode()):
947 948 949 950
            self._build_once(*inputs, **kwargs)
            return self.forward(*inputs, **kwargs)
        else:
            return self._dygraph_call_func(*inputs, **kwargs)
M
minqiyang 已提交
951

952
    def forward(self, *inputs, **kwargs):
953 954 955 956 957 958 959 960
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
961
        raise NotImplementedError
X
Xin Pan 已提交
962 963 964 965

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
966 967 968
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

969
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
970

971 972 973
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
974
        Returns:
975
            Layer: the sublayer passed in.
976

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
1002
        """
J
Jiabin Yang 已提交
1003
        assert (isinstance(sublayer, Layer) or sublayer == None)
1004

X
Xin Pan 已提交
1005 1006 1007 1008 1009 1010
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

1011
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
1012

1013 1014 1015
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
1016
        Returns:
1017
            Parameter: the parameter passed in.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1037
        """
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
1056
            raise TypeError(
1057 1058
                "The parameter to be added should be a Parameter, but received {}."
                .format(type(parameter).__name__))
1059 1060 1061
        else:
            if parameter is None:
                self._parameters[name] = None
1062

1063 1064 1065
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
1066

1067
                parameter.set_value(self._loaddict_holder[parameter.name])
1068

1069
            self._parameters[name] = parameter
X
Xin Pan 已提交
1070 1071
        return parameter

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
            layers_hooks = self._forward_pre_hooks if is_pre_hook else self._forward_post_hooks
            candidate_hook = record_program_ops_pre_hook if is_pre_hook else set_op_customized_attrs_post_hook

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
                already_registed = (layers_hooks[last_key] == candidate_hook)

            return already_registed

        if not isinstance(attrs, dict):
1095 1096 1097
            raise TypeError(
                "attrs should be type(dict), but received {}".format(
                    type(attrs).__name__))
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
                record_program_ops_pre_hook)
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
                set_op_customized_attrs_post_hook)
            if len(self._forward_post_hooks) > 1:
1113 1114
                self._forward_post_hooks.move_to_end(post_hook_helper._hook_id,
                                                     last=False)
1115 1116 1117 1118 1119 1120

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1121 1122 1123 1124 1125 1126
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1127
    def __getattr__(self, name):
1128 1129 1130
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
1131
                if in_declarative_mode():
1132
                    return _convert_into_variable(self._parameters[name])
1133 1134 1135 1136 1137 1138 1139 1140
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
1141
                if in_declarative_mode():
1142
                    return _convert_into_variable(_buffers[name])
1143 1144
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1145 1146

    def __setattr__(self, name, value):
1147

S
songyouwei 已提交
1148 1149 1150 1151 1152
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1153 1154
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1155
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1156 1157 1158 1159
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
1160
            if len(self._loaddict_holder) > 0:
1161
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
1162 1163 1164 1165
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

1166
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1167
            params[name] = value
1168 1169 1170 1171
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
1172 1173
                    .format(name,
                            type(value).__name__))
1174
            params[name] = None
X
Xin Pan 已提交
1175
        else:
1176
            layers = self.__dict__.get('_sub_layers', None)
J
Jiabin Yang 已提交
1177
            if isinstance(value, Layer):
1178 1179 1180 1181 1182
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1183
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1184 1185 1186 1187 1188
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
1189 1190
                        .format(name,
                                type(value).__name__))
1191 1192
                layers[name] = None
            else:
1193
                _buffers = self.__dict__.get('_buffers', None)
W
wanghuancoder 已提交
1194
                if isinstance(value, (core.VarBase, core.eager.Tensor)):
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
1205 1206
                    if not value.name:
                        value.name = unique_name.generate('_buffers_' + name)
1207 1208
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1209
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in
1210 1211 1212 1213
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1214 1215 1216 1217
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
1218 1219 1220
                        if in_declarative_mode() and _buffers[name] is None:
                            raise RuntimeError(
                                'In Dy2stat, self.{0} is a buffer and self.{0} is '
1221 1222 1223 1224
                                'not allowed to be set to Variable when self.{0} is None.'
                                .format(name))
                        elif _buffers[name] is None or type(getattr(
                                self, name)) == core.VarBase:
1225 1226
                            _buffers[name] = assign(value)
                        else:
1227
                            assign(value, getattr(self, name))
1228
                    elif value is not None:
1229 1230
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
1231 1232
                            .format(name,
                                    type(value).__name__))
1233 1234 1235 1236
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1237 1238
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1239 1240 1241 1242 1243 1244

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1245 1246 1247
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1248 1249 1250
        else:
            object.__delattr__(self, name)

1251 1252
    def __dir__(self):
        """
W
wanghuancoder 已提交
1253
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1254 1255

        Examples:
1256 1257 1258
            .. code-block:: python
                import paddle
                import numpy as np
1259

1260 1261 1262 1263 1264
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1265
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1266 1267
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1268

1269 1270 1271 1272
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

1314 1315 1316 1317 1318
    def register_state_dict_hook(self, hook):
        hook_remove_helper = HookRemoveHelper(self._state_dict_hooks)
        self._state_dict_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

1319 1320 1321
    def _obtain_parameters_buffers(self,
                                   destination=None,
                                   include_sublayers=True,
S
ShenLiang 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
                                   structured_name_prefix=""):
        """
        The difference from state_dict() is that state_dict_hook will not be called, 
        but the original types of parameters and buffers will be maintained.
        """
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._obtain_parameters_buffers(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
                    destination = destination_temp
        return destination

    def _state_dict_impl(self,
                         destination=None,
                         include_sublayers=True,
                         structured_name_prefix="",
1351 1352
                         include_non_persistable_buffer=False,
                         use_hook=True):
1353 1354 1355 1356 1357 1358 1359
        """
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            include_non_persistable_buffer(bool, optional): If true, include non persistable buffers of current layer and its sub-layers, it is used in pure fp16 and jit.save. Default: False
1360
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        """

        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if not include_non_persistable_buffer:
                if buffer is not None and name not in self._non_persistable_buffer_names_set:
                    destination[structured_name_prefix + name] = buffer
            else:
                if buffer is not None:
                    destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._state_dict_impl(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + ".",
1384
                            include_non_persistable_buffer, use_hook))
1385
                    destination = destination_temp
1386 1387 1388 1389 1390
        if use_hook:
            for state_dict_hook in self._state_dict_hooks.values():
                hook_result = state_dict_hook(destination)
                if hook_result is not None:
                    destination = hook_result
1391 1392 1393 1394 1395 1396

        return destination

    def to_static_state_dict(self,
                             destination=None,
                             include_sublayers=True,
1397 1398
                             structured_name_prefix="",
                             use_hook=True):
1399 1400 1401 1402 1403 1404
        '''
        Get all parameters and buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1405
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
        Retruns:
            dict: a dict contains all the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle

                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.to_static_state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")

        '''
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1425 1426
            include_non_persistable_buffer=True,
            use_hook=use_hook)
1427

H
hong 已提交
1428 1429 1430
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
1431 1432
                   structured_name_prefix="",
                   use_hook=True):
H
hong 已提交
1433
        '''
1434
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1435

1436
        Parameters:
1437 1438
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1439
            use_hook(bool, optional) : If true, the operations contained in _state_dict_hooks will be appended to the destination. Default: True
1440

H
hong 已提交
1441
        Retruns:
1442
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1443 1444

        Examples:
1445 1446
            .. code-block:: python

1447
                import paddle
H
hong 已提交
1448

1449 1450 1451 1452
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1453 1454

        '''
1455 1456 1457 1458
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
1459 1460
            include_non_persistable_buffer=False,
            use_hook=use_hook)
1461

1462
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1463
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1464
        '''
1465
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1466

1467
        Parameters:
1468
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
1469
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
H
hong 已提交
1470
                                                  Default: True
H
hong 已提交
1471 1472 1473 1474
        Returns:
            None

        Examples:
1475 1476
            .. code-block:: python

1477
                import paddle
1478

1479
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1480

1481
                state_dict = emb.state_dict()
1482 1483
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1484
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1485

H
hong 已提交
1486 1487
        '''

1488 1489 1490
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
1491 1492
                raise ValueError(
                    "{} is not found in the provided dict.".format(key))
S
Steffy-zxf 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
            if (isinstance(state, dict) or isinstance(state, list)):
                if (len(state) != len(param)):
                    raise ValueError("{} receieves the length of {}, "
                                     "but the expected shape is {}".format(
                                         key, len(state), len(param)))
                else:
                    return param, state
            else:
                state_shape = state.shape() if inspect.ismethod(
                    state.shape) else state.shape

                if list(state_shape) != list(param.shape):
                    raise ValueError(
                        "{} receives a shape {}, but the expected shape is {}.".
                        format(key, list(state_shape), list(param.shape)))
                return param, state
1509 1510

        matched_param_state = []
1511
        for key, param in self.state_dict(use_hook=False).items():
1512 1513 1514 1515 1516 1517 1518
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

J
Jiabin Yang 已提交
1519
        if _non_static_mode():
1520 1521 1522
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1523

1524 1525 1526 1527 1528 1529 1530
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1531 1532 1533 1534
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1535 1536 1537 1538 1539 1540 1541 1542 1543
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
1544 1545
                [param for param, state in matched_param_state], global_scope(),
                executor)
1546 1547 1548
            for param, state in matched_param_state:
                _set_var(param, state)

C
chentianyu03 已提交
1549 1550 1551 1552 1553
    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
1554 1555 1556 1557
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

1558
            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.
C
chentianyu03 已提交
1559

1560
            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
C
chentianyu03 已提交
1561
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1562
            
C
chentianyu03 已提交
1563
        Returns:
1564
            self
C
chentianyu03 已提交
1565 1566 1567 1568

        Examples:
            .. code-block:: python

1569
                # required: skip
C
chentianyu03 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
1595

1596
        '''
1597 1598 1599
        return self._to_impl(device=device,
                             dtype=dtype,
                             blocking=blocking,
1600 1601
                             include_sublayers=True,
                             floating_only=False)
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

    def _apply(self, func, device, dtype, blocking, include_sublayers=True):
        if include_sublayers:
            for layer in self.children():
                layer._apply(func, device, dtype, blocking, include_sublayers)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)

                if param.grad is not None:
                    with no_grad():
                        grad_applied = func(param._grad_ivar(), device, dtype,
                                            blocking)

        for key, buf in self._buffers.items():
1619 1620
            if buf is not None:
                self._buffers[key] = func(buf, device, dtype, blocking)
1621

1622 1623
        self._dtype = dtype

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
    def _transform(self, t, device, dtype, blocking):
        if device is None:
            device = t.place
        if dtype is None:
            dtype = t.dtype

        if type(dtype) is not VarDesc.VarType:
            dtype = convert_np_dtype_to_dtype_(dtype)

        # 1. gpu place need to determine whether the memory is sufficient for allocation:
        if t.place.is_gpu_place():
            # for gpu, minimum memory allocation unit is 256 bytes.
            size_dtype = core.size_of_dtype(dtype)
            # Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
            # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
            waiting_alloc_memory = (
                (np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
            gpu_memory_available = core.gpu_memory_available()
            if gpu_memory_available < waiting_alloc_memory:
                # Copy param / Tensor to cpu
                t_used = t._copy_to(paddle.CPUPlace(),
                                    blocking)  # k-v type will error
                # Release mem of t
                t.value().get_tensor()._clear()
            else:
                t_used = t
        else:
            t_used = t

        # 2. cast param / Tensor to dtype
        if dtype is not None and dtype != t_used.dtype:
            with paddle.fluid.framework._dygraph_place_guard(
                    place=t_used.place):
                t_casted = t_used.cast(dtype=dtype)
        else:
            t_casted = t_used

        # 3. Copy casted cpu param / Tensor to device
        if device is not None and not t_casted.place._equals(device):
            new_t = t_casted._copy_to(device, blocking)
        else:
            new_t = t_casted

        # 4. share Tensor to origin param / Tensor
        dst_tensor = t.value().get_tensor()
        src_tensor = new_t.value().get_tensor()
        dst_tensor._share_data_with(src_tensor)

        return t

1674 1675 1676 1677
    def _to_impl(self,
                 device=None,
                 dtype=None,
                 blocking=None,
1678 1679
                 include_sublayers=True,
                 floating_only=False):
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
            
            include_sublayers(bool|True, optional): If True, deal with self and all sublayers parameters and buffers, if not only deal with self parameters and buffers. Default: True.

1695 1696
            floating_only(bool|False, optional): If True, only cast all floating point parameters and buffers of Layer by the give device, dtype and blocking.

1697 1698
        Returns:
            self
C
chentianyu03 已提交
1699 1700 1701 1702

        '''

        if device is None and dtype is None and blocking is None:
1703
            return self
C
chentianyu03 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
1724 1725 1726
            if floating_only and (not paddle.is_floating_point(t)):
                return t
            return self._transform(t, device, dtype, blocking)
C
chentianyu03 已提交
1727

1728 1729
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
1730
            self._apply(transform, device, dtype, blocking, include_sublayers)
1731

1732
        self._dtype = dtype
1733
        return self
C
chentianyu03 已提交
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    def _startup_program(self):
        """
        Return starup program containing initialization operations of all parameters.

        NOTE(dev): This is a very low level API and only for inner developer.
        """
        startup_program = Program()
        for param in self.parameters():
            param._create_init_op(startup_program.global_block())

        return startup_program

1747 1748 1749
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict