elementwise_add_op.cu 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
Wu Yi 已提交
14
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
15
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
K
Kexin Zhao 已提交
16
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
17 18

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
19
namespace plat = paddle::platform;
G
gongweibao 已提交
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
namespace paddle {
namespace operators {

template <typename T>
struct SameDimsElemwiseAdd<platform::CUDADeviceContext, T> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    AddRangeFunctor<T> functor(x->data<T>(), y->data<T>(), z->data<T>());
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
                                                              x->numel());
    for_range(functor);
  }
};

template <>
struct SameDimsElemwiseAdd<platform::CUDADeviceContext, platform::float16> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    auto size = x->numel();
43 44 45
    dim3 grid_size = dim3(((size + 1) / 2 + PADDLE_CUDA_THREAD_SIZE - 1) /
                              PADDLE_CUDA_THREAD_SIZE,
                          1);
46 47 48 49 50 51 52
    dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
    const half* x2 =
        reinterpret_cast<const half*>(x->data<platform::float16>());
    const half* y2 =
        reinterpret_cast<const half*>(y->data<platform::float16>());
    half* z2 = reinterpret_cast<half*>(z->data<platform::float16>());
    SameDimsElemwiseAddCUDAKernel<<<
53
        grid_size, block_size, 0,
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        ctx.template device_context<platform::CUDADeviceContext>().stream()>>>(
        x2, y2, z2, size);
  }
};

template <typename T>
static __global__ void SimpleElemwiseAddGradCUDAKernel(const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    dx[col] = dout[col];
    dy[col] = dout[col];
    col += blockDim.x * gridDim.x;
  }
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_add_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
82
  dim3 grid_size =
83 84
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseAddGradCUDAKernel<
85
      T><<<grid_size, block_size, 0,
86 87 88 89 90 91 92
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      dout->data<T>(), size, dx->mutable_data<T>(ctx.GetPlace()),
      dy->mutable_data<T>(ctx.GetPlace()));
}

}  // namespace operators
}  // namespace paddle
Q
QI JUN 已提交
93
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
94 95 96
    elementwise_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
K
Kexin Zhao 已提交
97 98
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
99
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
100
    elementwise_add_grad,
K
Kexin Zhao 已提交
101 102 103
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int>,
C
chengduo 已提交
104 105
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, plat::float16>);
106 107 108 109 110
REGISTER_OP_CUDA_KERNEL(
    elementwise_add_grad_grad,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int>,
111 112 113
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext,
                                        plat::float16>);
114 115 116 117 118 119 120

REGISTER_OP_CUDA_KERNEL(
    grad_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>);