test_vhp.py 7.1 KB
Newer Older
L
levi131 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import paddle.compat as cpt
import paddle.nn.functional as F
from utils import _compute_numerical_vhp


class TestVHP(unittest.TestCase):
    @classmethod
    def setUpClass(self):
        self.shape = (2, 2)
        self.dtype = 'float32'
        self.np_dtype = np.float32
        self.numerical_delta = 1e-2
        self.rtol = 1e-2
        self.atol = 1e-2
        self.x = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.y = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.vx = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.vy = paddle.rand(shape=self.shape, dtype=self.dtype)

    def test_single_input(self):
        def func(x):
            return paddle.sum(paddle.matmul(x, x))

        numerical_func_output = func(self.x).numpy()
        numerical_vhp = _compute_numerical_vhp(
            func, self.x, self.vx, self.numerical_delta, self.np_dtype)

        self.x.stop_gradient = False
        func_output, vhp = paddle.autograd.vhp(func, self.x, self.vx)
        assert np.allclose(func_output.numpy(), numerical_func_output,
                           self.rtol, self.atol)
        assert np.allclose(vhp[0].numpy(), numerical_vhp[0], self.rtol,
                           self.atol)

    def test_multi_input(self):
        def func(x, y):
            return paddle.sum(paddle.matmul(x, y))

        numerical_func_output = func(self.x, self.y).numpy()
        numerical_vhp = _compute_numerical_vhp(
            func, [self.x, self.y], [self.vx, self.vy], self.numerical_delta,
            self.np_dtype)

        self.x.stop_gradient = False
        self.y.stop_gradient = False
        func_output, vhp = paddle.autograd.vhp(func, [self.x, self.y],
                                               [self.vx, self.vy])
        assert np.allclose(func_output.numpy(), numerical_func_output,
                           self.rtol, self.atol)
        for i in range(len(vhp)):
            assert np.allclose(vhp[i].numpy(), numerical_vhp[i], self.rtol,
                               self.atol)

    def test_v_default(self):
        def func(x, y):
            return paddle.sum(paddle.matmul(x, y))

        numerical_func_output = func(self.x, self.y).numpy()
        vx = paddle.ones(self.vx.shape, dtype=self.vx.dtype)
        vy = paddle.ones(self.vy.shape, dtype=self.vy.dtype)
        numerical_vhp = _compute_numerical_vhp(func, [self.x, self.y],
                                               [vx, vy], self.numerical_delta,
                                               self.np_dtype)

        self.x.stop_gradient = False
        self.y.stop_gradient = False
        func_output, vhp = paddle.autograd.vhp(func, [self.x, self.y])
        assert np.allclose(func_output.numpy(), numerical_func_output,
                           self.rtol, self.atol)
        for i in range(len(vhp)):
            assert np.allclose(vhp[i].numpy(), numerical_vhp[i], self.rtol,
                               self.atol)

    def test_allow_unused_false(self):
        def func(x, y):
            return paddle.sum(paddle.matmul(x, x))

        try:
            self.x.stop_gradient = False
            self.y.stop_gradient = False
            _ = paddle.autograd.vhp(func, [self.x, self.y])
        except ValueError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("allow_unused") > 0

    def test_allow_unused_true(self):
        def func(x, y):
            return paddle.sum(paddle.matmul(x, x))

        numerical_func_output = func(self.x, self.y).numpy()
        numerical_vhp = _compute_numerical_vhp(
            func, [self.x, self.y], [self.vx, self.vy], self.numerical_delta,
            self.np_dtype)

        self.x.stop_gradient = False
        self.y.stop_gradient = False
        func_output, vhp = paddle.autograd.vhp(func, [self.x, self.y],
                                               [self.vx, self.vy],
                                               allow_unused=True)
        assert np.allclose(func_output.numpy(), numerical_func_output,
                           self.rtol, self.atol)
        assert np.allclose(vhp[0].numpy(), numerical_vhp[0], self.rtol,
                           self.atol)
        assert vhp[1] is None

    def test_create_graph_false(self):
        def func(x):
            return paddle.sum(F.sigmoid(x))

        numerical_func_output = func(self.x).numpy()
        numerical_vhp = _compute_numerical_vhp(
            func, self.x, self.vx, self.numerical_delta, self.np_dtype)

        self.x.stop_gradient = False
        func_output, vhp = paddle.autograd.vhp(func, self.x, self.vx)
        assert np.allclose(func_output.numpy(), numerical_func_output,
                           self.rtol, self.atol)
        assert vhp[0].stop_gradient == True
        assert np.allclose(vhp[0].numpy(), numerical_vhp[0], self.rtol,
                           self.atol)
        try:
            paddle.grad(vhp, self.x)
        except RuntimeError as e:
            error_msg = cpt.get_exception_message(e)
            assert error_msg.find("has no gradient") > 0

    def test_create_graph_true(self):
        def func(x):
            return paddle.sum(F.sigmoid(x))

        numerical_func_output = func(self.x).numpy()
        numerical_vhp = _compute_numerical_vhp(
            func, self.x, self.vx, self.numerical_delta, self.np_dtype)

        self.x.stop_gradient = False
        func_output, vhp = paddle.autograd.vhp(func,
                                               self.x,
                                               self.vx,
                                               create_graph=True)
        assert np.allclose(func_output.numpy(), numerical_func_output,
                           self.rtol, self.atol)
        assert vhp[0].stop_gradient == False
        assert np.allclose(vhp[0].numpy(), numerical_vhp[0], self.rtol,
                           self.atol)
        triple_grad = paddle.grad(vhp, self.x)
        assert triple_grad is not None


class TestVHPFloat64(TestVHP):
    @classmethod
    def setUpClass(self):
        self.shape = (2, 2)
        self.dtype = 'float64'
        self.np_dtype = np.float64
        self.numerical_delta = 1e-5
        self.rtol = 1e-5
        self.atol = 1e-5
        self.x = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.y = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.vx = paddle.rand(shape=self.shape, dtype=self.dtype)
        self.vy = paddle.rand(shape=self.shape, dtype=self.dtype)


if __name__ == "__main__":
    unittest.main()