truncated_gaussian_random_op.cu 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
17 18 19
#include <thrust/random.h>
#include <thrust/transform.h>
#include <limits>
Y
yaoxuefeng 已提交
20
#include "paddle/fluid/framework/generator.h"
21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
23
#include "paddle/fluid/operators/truncated_gaussian_random_op.h"
24 25 26 27 28

namespace paddle {
namespace operators {

template <typename T>
29
struct GPUTruncatedNormal {
30 31 32 33 34 35
  T mean, std;
  T a_normal_cdf;
  T b_normal_cdf;
  unsigned int seed;
  T numeric_min;

36
  __host__ __device__ GPUTruncatedNormal(T mean, T std, T numeric_min, int seed)
37 38 39 40 41 42 43 44 45 46 47 48
      : mean(mean), std(std), seed(seed), numeric_min(numeric_min) {
    a_normal_cdf = (1.0 + erff(-2.0 / sqrtf(2.0))) / 2.0;
    b_normal_cdf = (1.0 + erff(2.0 / sqrtf(2.0))) / 2.0;
  }

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed);
    thrust::uniform_real_distribution<T> dist(numeric_min, 1);
    rng.discard(n);
    T value = dist(rng);
    auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
W
whs 已提交
49
    return std::sqrt(2.0) * erfinvf(2 * p - 1) * std + mean;
50 51 52
  }
};

Y
yaoxuefeng 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
template <typename T>
struct TruncatedNormalOffset {
  T mean, std;
  T a_normal_cdf;
  T b_normal_cdf;
  unsigned int seed;
  T numeric_min;
  int offset_;

  __host__ __device__ TruncatedNormalOffset(T mean, T std, T numeric_min,
                                            int seed, int offset)
      : mean(mean),
        std(std),
        seed(seed),
        numeric_min(numeric_min),
        offset_(offset) {
    a_normal_cdf = (1.0 + erff(-2.0 / sqrtf(2.0))) / 2.0;
    b_normal_cdf = (1.0 + erff(2.0 / sqrtf(2.0))) / 2.0;
  }

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed);
    thrust::uniform_real_distribution<T> dist(numeric_min, 1);
77
    rng.discard(n + offset_);
Y
yaoxuefeng 已提交
78 79 80 81 82 83
    T value = dist(rng);
    auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
    return std::sqrt(2.0) * erfinvf(2 * p - 1) * std + mean;
  }
};

84 85 86 87 88 89
template <typename T>
class GPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
W
whs 已提交
90

91
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
92
    bool seed_flag = false;
93 94 95
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
96
      seed_flag = true;
97 98 99 100 101
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
102 103 104 105 106 107 108

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
109
      int gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
110 111 112 113
      thrust::transform(
          index_sequence_begin, index_sequence_begin + size,
          thrust::device_ptr<T>(data),
          TruncatedNormalOffset<T>(mean, std, std::numeric_limits<T>::min(),
114
                                   seed_offset.first, gen_offset));
Y
yaoxuefeng 已提交
115
    } else {
116 117 118 119
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GPUTruncatedNormal<T>(
                            mean, std, std::numeric_limits<T>::min(), seed));
Y
yaoxuefeng 已提交
120
    }
121 122 123 124 125 126 127 128 129
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_CUDA_KERNEL(
    truncated_gaussian_random,
    paddle::operators::GPUTruncatedGaussianRandomKernel<float>);