context.cc 9.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/core/context.h"
#include "paddle/fluid/lite/core/cpu_info.h"

#ifdef LITE_WITH_LINUX
#include <sys/syscall.h>
#include <unistd.h>
#endif
#if __APPLE__
#include "TargetConditionals.h"
#if TARGET_OS_IPHONE
#include <mach/machine.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#endif  // TARGET_OS_IPHONE
#endif  // __APPLE__

namespace paddle {
namespace lite {

#ifdef LITE_WITH_ARM

void Context<TargetType::kARM>::SetCache(int l1size, int l2size, int l3size) {
  DeviceInfo& dev = DeviceInfo::Global();
  int cpu_count = arm_get_cpucount();
  dev.L1_cache_.resize(cpu_count);
  dev.L2_cache_.resize(cpu_count);
  dev.L3_cache_.resize(cpu_count);
  for (int i = 0; i < cpu_count; ++i) {
    dev.L1_cache_[i] = l1size;
    dev.L2_cache_[i] = l2size;
    dev.L3_cache_[i] = l3size;
  }
  workspace_.Resize({2 * (l1size + l2size)});
}

Context<TargetType::kARM>::Context() {
  active_ids_ = {0};
  mode_ = LITE_POWER_HIGH;
  DeviceInfo& dev = DeviceInfo::Global();
  workspace_.Resize(
      {static_cast<int64_t>(dev.L2_cache_[active_ids_[0]] / sizeof(float))});
#ifdef TARGET_IOS
  arch_ = APPLE;  // use 6x8
#else
  if (dev.big_core_ids_.size() > 0) {
    arch_ = dev.archs_[dev.big_core_ids_[0]];
  }
#endif
}

PowerMode Context<TargetType::kARM>::mode() const { return mode_; }

int Context<TargetType::kARM>::threads() const { return active_ids_.size(); }

Context<TargetType::kARM>::Context(const ARMContext& ctx) {
  mode_ = ctx.mode_;
  active_ids_ = ctx.active_ids_;
  workspace_ = ctx.workspace_;
  arch_ = ctx.arch_;
  count_ = ctx.count_;
}

ARMContext& Context<TargetType::kARM>::operator=(const ARMContext& ctx) {
  mode_ = ctx.mode_;
  active_ids_ = ctx.active_ids_;
  workspace_ = ctx.workspace_;
  arch_ = ctx.arch_;
  count_ = ctx.count_;
  return *this;
}

void Context<TargetType::kARM>::BindDev() {
#ifdef USE_OPENMP
  int num_threads = active_ids_.size();
  omp_set_num_threads(num_threads);
#ifdef LITE_WITH_LINUX
  std::vector<int> ssarets;
  for (int j = 0; j < num_threads; ++j) {
    ssarets.push_back(0);
  }
#pragma omp parallel for
  for (int i = 0; i < num_threads; i++) {
    ssarets[i] = set_sched_affinity(active_ids_);
  }
  for (int i = 0; i < num_threads; i++) {
    if (ssarets[i] != 0) {
      LOGE("set cpu affinity failed, cpuID: %d\n", active_ids_[i]);
      return;
    }
  }
#endif  // LITE_WITH_LINUX
#else   // USE_OPENMP
#ifdef LITE_WITH_LINUX
  std::vector<int> cpuid1;
  cpuid1.push_back(active_ids_[0]);
  int ssaret = set_sched_affinity(cpuid1);
  if (ssaret != 0) {
    printf("set cpu affinity failed, cpuID: %d\n", active_ids_[0]);
    return;
  }
#endif  // LITE_WITH_LINUX
#endif  // USE_OPENMP
}

void Context<TargetType::kARM>::SetRunMode(PowerMode mode, int threads) {
  DeviceInfo& dev = DeviceInfo::Global();
  int big_core_size = dev.big_core_ids_.size();
  int small_core_size = dev.little_core_ids_.size();
  if (threads > big_core_size + small_core_size) {
    threads = big_core_size + small_core_size;
  }
#ifdef USE_OPENMP
  count_++;
  int shift_num = (count_ / 10) % big_core_size;
  switch (mode) {
    case LITE_POWER_FULL:
      mode_ = mode;
      active_ids_.clear();
      for (int i = 0; i < threads; ++i) {
        if (i < big_core_size) {
          active_ids_.push_back(dev.big_core_ids_[i]);
        } else {
          active_ids_.push_back(dev.little_core_ids_[i - big_core_size]);
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
    case LITE_POWER_HIGH:
      active_ids_.clear();
      if (big_core_size > 0) {
        mode_ = LITE_POWER_HIGH;
        if (threads > big_core_size) {
          LOGE("threads: %d, exceed the big cores size: %d\n", threads,
               big_core_size);
          active_ids_ = dev.big_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.big_core_ids_[i]);
          }
        }
      } else {
        mode_ = LITE_POWER_LOW;
        LOGE("HIGH POWER MODE is not support, switch to little cores\n");
        if (threads > small_core_size) {
          active_ids_ = dev.little_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.little_core_ids_[i]);
          }
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
    case LITE_POWER_LOW:
      active_ids_.clear();
      if (small_core_size > 0) {
        mode_ = LITE_POWER_LOW;
        if (threads > small_core_size) {
          LOGW("threads: %d, exceed the little cores size: %d\n", threads,
               small_core_size);
          active_ids_ = dev.little_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.little_core_ids_[i]);
          }
        }
      } else {
        mode_ = LITE_POWER_HIGH;
        LOGW("LOW POWER MODE is not support, switch to big cores\n");
        if (threads > big_core_size) {
          active_ids_ = dev.big_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.big_core_ids_[i]);
          }
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
    case LITE_POWER_NO_BIND:
      mode_ = LITE_POWER_NO_BIND;
      active_ids_.clear();
      if (threads > dev.core_ids_.size()) {
        active_ids_.resize(dev.core_ids_.size());
      } else {
        active_ids_.resize(threads);
      }
      break;
    case LITE_POWER_RAND_HIGH:
      active_ids_.clear();
      if (big_core_size > 0) {
        mode_ = LITE_POWER_RAND_HIGH;
        if (threads > big_core_size) {
          LOGW("threads: %d, exceed the big cores size: %d\n", threads,
               big_core_size);
          active_ids_ = dev.big_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(
                dev.big_core_ids_[(i + shift_num) % big_core_size]);
          }
        }
      } else {
        mode_ = LITE_POWER_LOW;
        LOGW("HIGH POWER MODE is not support, switch to little cores\n");
        if (threads > small_core_size) {
          active_ids_ = dev.little_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.little_core_ids_[i]);
          }
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
    case LITE_POWER_RAND_LOW:
      active_ids_.clear();
      if (small_core_size > 0) {
        mode_ = LITE_POWER_RAND_LOW;
        if (threads > small_core_size) {
          LOGW("threads: %d, exceed the little cores size: %d\n", threads,
               small_core_size);
          active_ids_ = dev.little_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(
                dev.little_core_ids_[(i + shift_num) % small_core_size]);
          }
        }
      } else {
        mode_ = LITE_POWER_HIGH;
        LOGW("LOW POWER MODE is not support, switch to big cores\n");
        if (threads > big_core_size) {
          active_ids_ = dev.big_core_ids_;
        } else {
          for (int i = 0; i < threads; ++i) {
            active_ids_.push_back(dev.big_core_ids_[i]);
          }
        }
      }
      if (active_ids_.size() == 0) {
        active_ids_.push_back(0);
      }
      break;
  }
  //! fix multi-threads LITE_POWER_HIGH mode
  if (mode_ == LITE_POWER_NO_BIND || threads > 1) {
    int threads = active_ids_.size();
    omp_set_num_threads(threads);
  } else {
    if (check_online(active_ids_)) {
      BindDev();
    } else {
      LOG(ERROR) << "core id " << active_ids_[0]
                 << " is offline, switch to NO BIND MODE";
      int threads = active_ids_.size();
      omp_set_num_threads(threads);
    }
  }
#else
  if (big_core_size > 0) {
    active_ids_ = {dev.big_core_ids_[0]};
  } else {
    active_ids_ = {0};
  }
#endif
  //! alloc memory for sgemm in this context
  int temp_mem_size =
      DeviceInfo::Global().L2_cache_[active_ids_[0]] / sizeof(float);
  workspace_.Resize({temp_mem_size});
  arch_ = DeviceInfo::Global().archs_[active_ids_[0]];
}

ARMArch Context<TargetType::kARM>::arch() const { return arch_; }

void Context<TargetType::kARM>::SetArch(ARMArch arch) { arch_ = arch; }

int Context<TargetType::kARM>::l1_cache_size() const {
  DeviceInfo& dev = DeviceInfo::Global();
  return dev.L1_cache_[active_ids_[0]];
}

int Context<TargetType::kARM>::l2_cache_size() const {
  DeviceInfo& dev = DeviceInfo::Global();
  return dev.L2_cache_[active_ids_[0]];
}

int Context<TargetType::kARM>::l3_cache_size() const {
  DeviceInfo& dev = DeviceInfo::Global();
  return dev.L3_cache_[active_ids_[0]];
}

bool Context<TargetType::kARM>::ExtendWorkspace(DDimLite dims) {
  auto count = dims.product();
  auto old = workspace_.dims();
  if (count == old.product()) {
    return false;
  }

  workspace_.Resize(
      {static_cast<int64_t>(count + l2_cache_size() / sizeof(float))});
  return true;
}
#endif  // LITE_WITH_ARM

}  // namespace lite
}  // namespace paddle