framework.py 30.1 KB
Newer Older
Y
Yu Yang 已提交
1
import collections
Q
qiaolongfei 已提交
2
import contextlib
3

Y
Yu Yang 已提交
4
import numpy as np
Q
qiaolongfei 已提交
5

6
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
7
from . import core
Y
Yu Yang 已提交
8

9 10
__all__ = [
    'Block', 'Variable', 'Program', 'Operator', 'default_startup_program',
Y
Yu Yang 已提交
11 12
    'default_main_program', 'program_guard', 'switch_startup_program',
    'switch_main_program'
13
]
Y
Yu Yang 已提交
14

Q
qiaolongfei 已提交
15 16 17 18 19 20 21 22 23 24 25 26
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
    return gradient name for a certain var name
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
27

Q
Qiao Longfei 已提交
28
def unique_name(prefix):
29 30 31 32 33 34 35 36 37
    """
    Generate unique names with prefix

    Args:
        prefix(str): The prefix of return string

    Returns(str): A unique string with the prefix

    """
Q
Qiao Longfei 已提交
38 39 40 41
    uid = core.unique_integer(prefix)  # unique during whole process.
    return "_".join([prefix, str(uid)])


42
def convert_np_dtype_to_dtype_(np_dtype):
43 44 45 46 47 48 49 50
    """
    Convert the data type in numpy to the data type in Paddle
    Args:
        np_dtype(np.dtype): the data type in numpy

    Returns(core.DataType): the data type in Paddle

    """
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
        return core.DataType.FP32
    elif dtype == np.float64:
        return core.DataType.FP64
    elif dtype == np.float16:
        return core.DataType.FP16
    elif dtype == np.int32:
        return core.DataType.INT32
    elif dtype == np.int16:
        return core.DataType.INT16
    elif dtype == np.int64:
        return core.DataType.INT64
    elif dtype == np.bool:
        return core.DataType.BOOL
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
71 72 73 74 75 76 77 78 79
    """
    Check the data type is floating or not.
    Args:
        dtype(np.dtype|core.DataType): data type.
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
80 81 82
    if not isinstance(dtype, core.DataType):
        dtype = convert_np_dtype_to_dtype_(dtype)

83
    return dtype in [core.DataType.FP16, core.DataType.FP32, core.DataType.FP64]
84 85


Y
Yang Yang(Tony) 已提交
86
def _debug_string_(proto, throw_on_error=True):
87 88 89 90 91 92 93 94 95 96 97
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
98
    error_fields = list()
Y
Yang Yang(Tony) 已提交
99
    if not proto.IsInitialized(error_fields) and throw_on_error:
Y
Yu Yang 已提交
100 101 102 103 104
        raise ValueError("{0} are not initialized\nThe message is {1}".format(
            error_fields, proto))
    return proto.__str__()


Y
Yu Yang 已提交
105
class Variable(object):
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    """
    Python variable. Every input and output of an operator is a variable. Every
    variable belongs to a block. The variable has a name and two variables in
    different blocks could have the same name.

    There are many kinds of variables. Please reference the framework.proto for
    details.

    Notes: The constructor of Variable should not be invoked directly. Please
    use `Block.create_var` to create a variable.

    >>> cur_program = Program()
    >>> cur_block = cur_program.current_block()
    >>> new_variable = cur_block.create_var(
    >>>                    name="X", shape=[-1, 23, 48], dtype='float32')

    Args:
        block(Block): The associated block. It will be passed by
            `Block.create_var` automatically.
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
        shape(tuple|list|None): The shape of variable. -1 means the batch size.
            Some kinds of variable do not contain shape, just set it to None.
        dtype(np.dtype|core.DataType|str): The data type of variable.
        lod_level(int): The level of lod tensor. 0 means there is not a time
            series data.
        persistable(bool): True if the variable should be saved as check point.
            Defaults to False.
        stop_gradient(bool): True if the variable will stop to calculate
            gradients when backward. Defaults to False.
    """

Y
Yu Yang 已提交
138 139
    def __init__(self,
                 block,
Y
Yu Yang 已提交
140
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
141 142 143 144
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
Q
QI JUN 已提交
145
                 persistable=None,
Y
Yu Yang 已提交
146
                 stop_gradient=False,
Y
Yu Yang 已提交
147
                 **kwargs):
Y
Yu Yang 已提交
148 149 150 151
        self.block = block

        if name is None:
            name = Variable._unique_var_name_()
D
Dong Zhihong 已提交
152 153 154 155
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
156
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
157
            is_new_var = True
Y
Yu Yang 已提交
158

Y
Yu Yang 已提交
159 160 161 162 163 164 165 166
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
167
        if shape is not None:
Y
Yu Yang 已提交
168
            if is_new_var:
169
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
170 171 172 173 174 175 176 177
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
178
        if dtype is not None:
Y
Yu Yang 已提交
179
            if not isinstance(dtype, core.DataType):
180
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
181
            if is_new_var:
F
fengjiayi 已提交
182
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
183
            else:
F
fengjiayi 已提交
184
                old_dtype = self.dtype
Q
QI JUN 已提交
185
                if dtype != old_dtype:
Y
Yu Yang 已提交
186 187 188 189 190
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
191 192

        if lod_level is not None:
Y
Yu Yang 已提交
193
            if is_new_var:
194
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
195 196 197 198 199 200 201
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
202 203 204 205 206 207 208 209 210 211 212
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

Y
Yu Yang 已提交
213
        self.block.vars[name] = self
Y
Yu Yang 已提交
214
        self.op = None
Y
Yu Yang 已提交
215
        self.stop_gradient = stop_gradient
Y
Yu Yang 已提交
216

217
    def __str__(self):
Y
Yang Yang(Tony) 已提交
218 219 220
        return self.to_string(True)

    def to_string(self, throw_on_error):
221 222 223 224 225 226 227 228 229 230
        """
        Get debug string.

        Args:
            throw_on_error(bool): True if raise an exception when self is not
                intialized.

        Returns(str): The debug string.

        """
231 232
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
233
        return _debug_string_(proto, throw_on_error)
234 235 236

    __repr__ = __str__

237 238 239 240
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
241 242 243 244
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
245 246
    @property
    def name(self):
247
        return self.desc.name()
Y
Yu Yang 已提交
248 249 250 251

    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
252
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
253 254

    @property
F
fengjiayi 已提交
255 256
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
257 258 259

    @property
    def lod_level(self):
260
        return self.desc.lod_level()
Y
Yu Yang 已提交
261

Y
Yu Yang 已提交
262 263 264 265
    @property
    def type(self):
        return self.desc.type()

Y
Yu Yang 已提交
266 267
    @staticmethod
    def _unique_var_name_():
268 269 270
        prefix = "_generated_var"
        uid = core.unique_integer(prefix)  # unique during whole process.
        return "_".join([prefix, str(uid)])
Y
Yu Yang 已提交
271

Y
Yu Yang 已提交
272

F
fengjiayi 已提交
273 274 275
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
276 277 278

    Returns(list): list of OpProto

F
fengjiayi 已提交
279 280 281 282 283 284 285 286 287 288
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
289 290 291 292
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
            '_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
309 310 311 312 313 314 315 316
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
317 318
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
319 320 321
        return self.op_proto_map[type]


Y
Yu Yang 已提交
322
class Operator(object):
323 324 325 326 327 328
    """
    Python Operator class. The operator represents the build in instructs in a
    Block. Users can use the build in instructs to describe their neural
    network.
    """

Y
Yu Yang 已提交
329 330
    def __init__(self,
                 block,
Y
Yu Yang 已提交
331
                 desc,
Y
Yu Yang 已提交
332 333 334 335
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        """
        Constructor.

        Notes: The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

        >>> cur_program = Program()
        >>> cur_block = cur_program.current_block()
        >>> # var1 += var2 + var3
        >>> cur_block.append_op(type="sum",
        >>>                     inputs={"X": [var1, var2, var3]},
        >>>                     outputs={"Out": [var1]})

        Args:
            block(Block): The block has the current operator
            desc(core.OpDesc): The protobuf description
            type(str): The type of operator.
            inputs(dict): The input dictionary. Key is the input parameter name.
                Value is a list of variables.
            outputs(dict): The output dictionary. Has same format with inputs
            attrs(dict): The attributes dictionary. Key is attribute name. Value
                is the attribute value. The attribute type should be as same as
                the type registered in C++
        """
Y
Yu Yang 已提交
360
        self.block = block
Y
Yu Yang 已提交
361
        self.desc = desc
F
fengjiayi 已提交
362 363 364 365 366
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
367
        self.desc.set_type(type)
F
fengjiayi 已提交
368
        proto = OpProtoHolder.instance().get_op_proto(type)
369

Y
Yang Yang(Tony) 已提交
370 371
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
372
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
373 374
                    return True
            return False
Q
QI JUN 已提交
375

Y
Yang Yang(Tony) 已提交
376 377 378 379 380 381 382
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
383 384 385 386
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
387 388
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
389 390 391 392 393
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
                        in_arg_names.append(arg.name)
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
394 395
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
396

Y
Yu Yang 已提交
397
        if outputs is not None:
398 399 400 401 402 403 404 405 406 407 408 409
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
                raise ValueError(
                    "Incorrect setting for output(s) of operator \"%s\". Need: [%s] Given: [%s]"
                    % (type, ", ".join(str(e) for e in need), ", ".join(
                        str(e) for e in given)))

F
fengjiayi 已提交
410
            for out_proto in proto.outputs:
411 412 413 414
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
415 416
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
417 418 419 420 421 422
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
423

Y
Yu Yang 已提交
424
        if attrs is not None:
425 426
            if not isinstance(attrs, dict):
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
427
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
428
                attr_name = attr.name
429
                if (not attr_name in attrs) or (attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
430
                    continue
Y
Yang Yang(Tony) 已提交
431
                if isinstance(attrs[attr_name], Block):
F
Update  
fengjiayi 已提交
432
                    self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
Y
Yang Yang(Tony) 已提交
433 434
                else:
                    self.desc.set_attr(attr_name, attrs[attr_name])
Y
Yu Yang 已提交
435

436
        self.desc.check_attrs()
Y
Yang Yang(Tony) 已提交
437
        no_kernel_op_set = {
Y
Yu Yang 已提交
438
            'feed', 'fetch', 'save', 'load', 'recurrent',
Q
init  
qijun 已提交
439
            'rnn_memory_helper_grad', 'conditional_block', 'while', 'get_places'
Y
Yang Yang(Tony) 已提交
440
        }
441
        if type not in no_kernel_op_set:
Q
QI JUN 已提交
442
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
443
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
444

Y
Yang Yang(Tony) 已提交
445
    def to_string(self, throw_on_error):
446 447 448 449 450 451 452 453 454
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True

        Returns(str): The debug string.

        """
455 456
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
457 458 459 460
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
461 462 463

    __repr__ = __str__

F
fengjiayi 已提交
464 465 466 467 468
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
469 470 471 472 473 474 475 476 477
        """
        Get input arguments by the input parameter name
        Args:
            name(str): The input parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
478 479 480 481
        return self.desc.input(name)

    @property
    def input_names(self):
482 483 484 485 486
        """
        Get all input parameter names
        Returns(list): return a list of input parameter names

        """
F
fengjiayi 已提交
487 488 489
        return self.desc.input_names()

    def output(self, name):
490 491 492 493 494 495 496 497 498
        """
        Get output arguments by the output parameter name
        Args:
            name(str): The output parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
499 500 501 502
        return self.desc.output(name)

    @property
    def output_names(self):
503 504 505 506 507
        """
        Get all output parameter names
        Returns(list): return a list of output parameter names

        """
F
fengjiayi 已提交
508 509
        return self.desc.output_names()

510 511
    @property
    def idx(self):
512 513 514 515 516 517
        """
        Return the array index of current operator.
        Returns(int): The array index in block.ops array
        Raises:
            ValueError: when the operator is not found.
        """
518 519 520 521 522 523
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
524
    def has_attr(self, name):
525 526 527 528 529 530 531 532
        """
        operator has the attribute with name or not.
        Args:
            name(str): the attribute name

        Returns(bool): True if has this attribute.

        """
F
fengjiayi 已提交
533 534 535
        return self.desc.has_attr(name)

    def attr_type(self, name):
536 537 538 539 540 541 542 543
        """
        Get the type of attribute by attribute name
        Args:
            name(str): the attribute name

        Returns(core.AttrType): the attribute type

        """
F
fengjiayi 已提交
544 545 546 547
        return self.desc.attr_type(name)

    @property
    def attr_names(self):
548 549 550 551 552
        """
        Get all attribute names
        Returns(list): The list of attribute name

        """
F
fengjiayi 已提交
553 554 555
        return self.desc.attr_names()

    def attr(self, name):
556 557 558 559 560 561 562 563 564
        """
        Get attribute by name
        Args:
            name(str): the attribute name

        Returns(bool|int|str|float|list): The attribute value. The return value
            can be any valid attribute type.

        """
F
fengjiayi 已提交
565
        return self.desc.attr(name)
Y
Yu Yang 已提交
566

F
fengjiayi 已提交
567
    def block_attr(self, name):
568 569 570 571 572 573 574 575
        """
        Get the block attribute by name
        Args:
            name(str): the attribute name

        Returns(int): the block index

        """
F
fengjiayi 已提交
576
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
577 578


Y
Yu Yang 已提交
579 580
class Block(object):
    def __init__(self, program, idx):
Y
Yu Yang 已提交
581
        self.desc = program.desc.block(idx)
Y
Yu Yang 已提交
582
        self.vars = dict()  # var_name --> var
Y
Yu Yang 已提交
583
        self.ops = collections.deque()  # operator list
Y
Yu Yang 已提交
584 585
        self.program = program

586
    def __str__(self):
Y
Yang Yang(Tony) 已提交
587 588 589
        return self.to_string(True)

    def to_string(self, throw_on_error):
590 591
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.BlockDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
592
        return _debug_string_(proto, throw_on_error)
593 594 595

    __repr__ = __str__

Y
Yu Yang 已提交
596 597
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
598
        return self.desc.parent
Y
Yu Yang 已提交
599 600 601

    @property
    def idx(self):
Y
Yu Yang 已提交
602
        return self.desc.id
Y
Yu Yang 已提交
603

Q
Qiao Longfei 已提交
604
    def var(self, name):
Y
Yu Yang 已提交
605 606 607 608
        if not isinstance(name, basestring):
            raise TypeError()
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
609
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
610
        return v
Q
Qiao Longfei 已提交
611 612

    def all_parameters(self):
613 614 615 616 617
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
618

Y
Yu Yang 已提交
619
    def create_var(self, *args, **kwargs):
Q
Qiao Longfei 已提交
620
        var = Variable(self, *args, **kwargs)
621 622
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
623
        return var
Y
Yu Yang 已提交
624

Q
Qiao Longfei 已提交
625 626 627
    def has_var(self, name):
        return name in self.vars

Y
Yu Yang 已提交
628 629
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
630
        param = Parameter(global_block, *args, **kwargs)
631 632
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
633
        return param
Y
Yu Yang 已提交
634

Y
Yu Yang 已提交
635
    def append_op(self, *args, **kwargs):
Y
Yu Yang 已提交
636 637
        op_desc = self.desc.append_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
638 639 640 641
        self.ops.append(op)
        return op

    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
642 643
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
644 645 646
        self.ops.appendleft(op)
        return op

Q
Qiao Longfei 已提交
647 648 649 650 651 652 653
    def sync_with_cpp(self):
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

        # sync operators from cpp
654 655 656 657
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.appendleft(op)

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

691 692 693 694
    def copy_param_info_from(self, other):
        """
        Copy the information of parameters from other block
        Args:
695
            other(Block): other block
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
Y
Yu Yang 已提交
719
                clip_attr=p.clip_attr,
720 721 722
                name=v.name)
            self.vars[new_p.name] = new_p

Y
Yu Yang 已提交
723 724

class Program(object):
725 726
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
727 728
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
729
        self._seed = 0
Y
Yu Yang 已提交
730

731
    def __str__(self):
Y
Yang Yang(Tony) 已提交
732 733 734
        return self.to_string(True)

    def to_string(self, throw_on_error):
735 736
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.ProgramDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
737
        return _debug_string_(proto, throw_on_error)
738

Y
Yu Yang 已提交
739 740 741 742 743
    def clone(self):
        p = Program()
        p.desc = core.ProgramDesc(self.desc)
        p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
        p.sync_with_cpp()
744
        p.copy_param_info_from(self)
Y
Yu Yang 已提交
745
        return p
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    def prune(self, targets):
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    t = t.op
                else:
                    raise ValueError(
                        "All targets of prune() can only be Variable or Operator."
                    )

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

767 768 769 770 771 772 773
    def inference_optimize(self):
        res = Program()
        res.desc = core.inference_optimize(self.desc)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

774 775 776 777
    @staticmethod
    def parse_from_string(binary_str):
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
778
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
779 780
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
781

D
dzhwinter 已提交
782 783 784 785 786 787 788 789 790 791
    @property
    def random_seed(self):
        return self._seed

    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
792 793
    def __repr__(self):
        return str(self)
794

Y
Yu Yang 已提交
795 796 797
    def global_block(self):
        return self.blocks[0]

Q
Qiao Longfei 已提交
798 799 800
    def block(self, index):
        return self.blocks[index]

Y
Yu Yang 已提交
801 802 803
    def current_block(self):
        return self.blocks[self.current_block_idx]

F
fengjiayi 已提交
804
    def append_backward(self, target, no_grad_set=None):
Q
Qiao Longfei 已提交
805 806 807
        """
        return map(param_name -> (grad_name, block_index, op_index))
        """
Q
Qiao Longfei 已提交
808
        assert isinstance(target, Variable)
F
fengjiayi 已提交
809 810
        if no_grad_set is None:
            no_grad_set = set()
Y
Yang Yang(Tony) 已提交
811 812 813 814 815 816 817 818
        try:
            param_to_grad_info = self.desc.append_backward(target.desc,
                                                           no_grad_set)
        except Exception as e:
            raise core.EnforceNotMet(
                str(e) + "\nCurrent protobuf is\n{0}".format(
                    self.to_string(False)))

Q
Qiao Longfei 已提交
819 820 821
        self.sync_with_cpp()
        return param_to_grad_info

Y
Yu Yang 已提交
822 823
    def create_block(self):
        new_block_idx = len(self.blocks)
Y
Yu Yang 已提交
824
        self.desc.append_block(self.current_block().desc)
Y
Yu Yang 已提交
825 826 827 828 829 830 831
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
832 833 834 835 836 837
    def sync_with_cpp(self):
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

838 839
    def copy_param_info_from(self, other):
        """
840
        Copy the information of parameters from other program.
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

856 857 858 859 860
    def list_vars(self):
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
861

Y
Yu Yang 已提交
862 863 864 865 866 867 868 869 870 871 872
class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
873 874 875

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
876 877 878 879
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

880 881
        self.regularizer = kwargs.get('regularizer', None)

Y
Yu Yang 已提交
882 883
        self.clip_attr = kwargs.get('clip_attr', None)

Y
Yu Yang 已提交
884

Y
Yu Yang 已提交
885
# program is a global instance.
Y
Yu Yang 已提交
886 887
_main_program_ = Program()
_startup_program_ = Program()
888

889

890
def default_startup_program():
Y
Yu Yang 已提交
891 892 893
    """
    Get default startup program. In startup program, Paddle will initialize
    parameters, initialize nccl handle, etc.
894

Y
Yu Yang 已提交
895 896 897
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
898
    return _startup_program_
899

900

901
def default_main_program():
Y
Yu Yang 已提交
902 903
    """
    Get default main program. The main program is used for training or testing.
904

Y
Yu Yang 已提交
905 906 907
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
908
    return _main_program_
Y
Yu Yang 已提交
909 910 911 912 913


def switch_main_program(program):
    """
    Switch the main program to a new program.
914

Y
Yu Yang 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
929
    Switch the startup program to a new program
Y
Yu Yang 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
    Switch program with `with` statement
946

Y
Yu Yang 已提交
947 948 949 950
    Examples:
        >>> with program_guard(Program()):
        >>>   data = fluid.layers.data(...)
        >>>   hidden = fluid.layers.fc(...)
951

Y
Yu Yang 已提交
952 953
    Args:
        main_program(Program): New main program inside `with` statement
954
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
            None means do not change startup program.

    Returns:
        None
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)