test_TrainerOnePass.cpp 9.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <paddle/utils/GlobalConstants.h>
Y
Yu Yang 已提交
16
#include <paddle/utils/PythonUtil.h>
X
Xin Pan 已提交
17 18
#include "paddle/legacy/trainer/Trainer.h"
#include "paddle/legacy/trainer/TrainerInternal.h"
Z
zhangjinchao01 已提交
19 20

#include <gtest/gtest.h>
X
Xin Pan 已提交
21
#include <paddle/legacy/pserver/ParameterServer2.h>
Z
zhangjinchao01 已提交
22 23 24 25

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

X
Xin Pan 已提交
26 27
static const string& configFile1 =
    "legacy/trainer/tests/sample_trainer_config.conf";
Z
zhangjinchao01 已提交
28
static const string& configFile2 =
X
Xin Pan 已提交
29
    "legacy/trainer/tests/sample_trainer_config_parallel.conf";
Z
zhangjinchao01 已提交
30

31
static const string& configFileSimpleSparse =
X
Xin Pan 已提交
32
    "legacy/trainer/tests/simple_sparse_neural_network.py";
33

34 35 36 37 38 39
DECLARE_bool(use_gpu);
DECLARE_string(config);
DECLARE_int32(gpu_id);
DECLARE_int32(seed);
DECLARE_int32(num_passes);
DECLARE_int32(saving_period);
Z
zhangjinchao01 已提交
40 41

class TrainerForTest : public paddle::Trainer {
W
Wu Yi 已提交
42
 public:
Z
zhangjinchao01 已提交
43 44 45 46 47 48 49
  inline const std::shared_ptr<ParameterUpdater>& getParameterUpdaterForTest() {
    return this->trainerInternal_.getParameterUpdater();
  }
};

int gNumDevices = 0;

50 51 52 53 54
void trainerOnePassTest(const string& configFile,
                        bool useGpu,
                        bool parallel,
                        int trainerCount = 1,
                        double averageWindow = 0.0f,
Z
zhangjinchao01 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
                        bool doAverageInCpu = false) {
  FLAGS_use_gpu = useGpu;
  FLAGS_parallel_nn = parallel;
  FLAGS_config = configFile;
  FLAGS_trainer_count = trainerCount;
  LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount
            << " configFile=" << configFile;
  srand(FLAGS_seed);

  if (useGpu) {
    if (gNumDevices < trainerCount) {
      return;
    }
  }

  Trainer trainer;
  auto config = TrainerConfigHelper::createFromFlagConfig();
  if (averageWindow > 0) {
    config->getOptConfig().set_average_window(averageWindow);
    config->getOptConfig().set_do_average_in_cpu(doAverageInCpu);
  }
  trainer.init(config);
  trainer.train();
}

// 1. test trainer (cpu, gpu).
TEST(trainerOnePass, cpu) { trainerOnePassTest(configFile1, false, false); }

83
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
84 85 86 87 88 89
TEST(trainerOnePass, gpu) { trainerOnePassTest(configFile1, true, false); }

TEST(trainerOnePass, gpu2) { trainerOnePassTest(configFile1, true, false, 2); }

TEST(trainerOnePass, gpu4) { trainerOnePassTest(configFile1, true, false, 4); }

L
liaogang 已提交
90 91 92 93 94
TEST(trainerOnePass, parallel) {
  if (hl_get_device_count() >= 2) {
    trainerOnePassTest(configFile2, true, true);
  }
}
Z
zhangjinchao01 已提交
95 96 97
#endif

// 2. test average_window.
98
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
99 100 101 102 103
TEST(average_window, gpu) {
  trainerOnePassTest(configFile1, true, false, 4, 0.01);
}

TEST(average_window, gpu2) {
L
Luo Tao 已提交
104
  FLAGS_num_passes = 20;
Z
zhangjinchao01 已提交
105 106 107 108 109
  trainerOnePassTest(configFile1, true, false, 2, 0.01);
  FLAGS_num_passes = 1;
}

TEST(average_window, gpu4) {
L
Luo Tao 已提交
110
  FLAGS_num_passes = 20;
Z
zhangjinchao01 已提交
111 112 113 114 115
  trainerOnePassTest(configFile1, true, false, 4, 0.01);
  FLAGS_num_passes = 1;
}

TEST(average_window_cpu, gpu2) {
L
Luo Tao 已提交
116
  FLAGS_num_passes = 20;
Z
zhangjinchao01 已提交
117 118 119 120 121
  trainerOnePassTest(configFile1, true, false, 2, 0.01, true);
  FLAGS_num_passes = 1;
}

TEST(average_window_cpu, gpu4) {
L
Luo Tao 已提交
122
  FLAGS_num_passes = 20;
Z
zhangjinchao01 已提交
123 124 125 126 127 128
  trainerOnePassTest(configFile1, true, false, 4, 0.01, true);
  FLAGS_num_passes = 1;
}
#endif

// 3. test trainer + pserver.
129 130 131 132
DECLARE_int32(num_gradient_servers);
DECLARE_int32(port);
DECLARE_bool(local);
DECLARE_bool(use_old_updater);
Z
zhangjinchao01 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

double checkRemoteParameterUpdater(TrainerForTest& trainer) {
  auto gradientMachine = trainer.getGradientMachine();
  auto parameterUpdater = trainer.getParameterUpdaterForTest();
  auto dataProvider = trainer.getDataProvider();
  auto& parameters = gradientMachine->getParameters();
  const TrainerConfig& config = trainer.getConfig();
  const string& alg = config.opt_config().algorithm();

  vector<ParameterPtr> parameterCheck;
  for (auto& parameter : parameters) {
    parameterCheck.emplace_back(
        new Parameter(parameter->getConfig(), /* useGpu= */ false));
    parameterCheck.back()
        ->getBuf(PARAMETER_VALUE)
        ->copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    parameterCheck.back()
        ->getBuf(PARAMETER_GRADIENT)
        ->copyFrom(*parameter->getBuf(PARAMETER_GRADIENT));
  }

  std::unique_ptr<ParameterUpdater> parameterUpdaterCheck;
  if (alg == TrainAlgorithm::SGD) {
    parameterUpdaterCheck.reset(new SgdLocalUpdater(config.opt_config()));
  } else {
    LOG(INFO) << "unsupported algorithm in remote parameter check: " << alg;
    return -1.0;
  }
  parameterUpdaterCheck->init(parameterCheck);

  // gradientMachine->start(config, *dataProvider);
  DataBatch dataBatch;
  int32_t batchSize = config.opt_config().batch_size();
  dataProvider->getNextBatch(batchSize, &dataBatch);
  CHECK(dataBatch.getSize()) << "No data from data provider";
  int64_t actualBatchSize = dataBatch.getSize();
  const vector<Argument>& inArgs = dataBatch.getStreams();
  vector<Argument> outArgs;

172 173 174 175 176 177 178
  UpdateCallback updateCallback = [parameterUpdater,
                                   parameterCheck](Parameter* para) {
    parameterCheck[para->getID()]
        ->getBuf(PARAMETER_GRADIENT)
        ->copyFrom(*para->getBuf(PARAMETER_GRADIENT));
    parameterUpdater->update(para);
  };
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185

  parameterUpdater->startPass();
  parameterUpdaterCheck->startPass();

  for (int i = 0; i < config.opt_config().num_batches_per_get_parameter() * 2;
       ++i) {
    PassType passType = parameterUpdater->startBatch(actualBatchSize);
186 187
    gradientMachine->forwardBackward(
        inArgs, &outArgs, passType, updateCallback);
Z
zhangjinchao01 已提交
188 189 190 191 192 193 194 195 196 197 198
    parameterUpdater->finishBatch(0);

    parameterUpdaterCheck->startBatch(actualBatchSize);
    for (auto& para : parameterCheck) {
      parameterUpdaterCheck->update(para.get());
    }
    parameterUpdaterCheck->finishBatch(0);
  }

  double sum = 0.0f;
  for (size_t i = 0; i != parameters.size(); ++i) {
199
    real *v1, *v2;
Z
zhangjinchao01 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    CpuVector trainerPara(parameters[i]->getSize());
    trainerPara.copyFrom(*parameters[i]->getBuf(PARAMETER_VALUE));
    if (!FLAGS_use_gpu) {
      v1 = parameters[i]->getBuf(PARAMETER_VALUE)->getData();
    } else {
      v1 = trainerPara.getData();
    }
    v2 = parameterCheck[i]->getBuf(PARAMETER_VALUE)->getData();

    size_t size = parameters[i]->getSize();
    double diff = 0;
    for (size_t j = 0; j < size; ++j) {
      diff += fabs(v1[j] - v2[j]);
    }
    sum += diff;
    LOG(INFO) << setiosflags(ios::left) << setfill(' ') << setw(20)
              << parameters[i]->getName() << "diff=" << setw(15) << diff;
  }

  parameterUpdater->finishPass();
  parameterUpdaterCheck->finishPass();
  gradientMachine->finish();
  return sum;
}

225 226 227 228
void checkRemoteParameterUpdaterTest(const string& configFile,
                                     bool useGpu,
                                     bool parallel,
                                     int trainerCount = 1,
Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                                     bool useOldUpdater = false,
                                     int num_batches_per_get_parameter = 1) {
  FLAGS_use_gpu = useGpu;
  FLAGS_parallel_nn = parallel;
  FLAGS_config = configFile;
  FLAGS_trainer_count = trainerCount;
  FLAGS_use_old_updater = useOldUpdater;
  LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount
            << " configFile=" << configFile;
  srand(FLAGS_seed);

  if (useGpu) {
    if (gNumDevices < trainerCount) {
      return;
    }
  }

  FLAGS_local = 0;
  std::shared_ptr<ParameterServer2> pserver;
  pserver.reset(new ParameterServer2(std::string(), FLAGS_port));
  pserver->init();
  pserver->start();

  TrainerForTest trainer;
  auto config = TrainerConfigHelper::createFromFlagConfig();
  config->getOptConfig().set_num_batches_per_get_parameter(
      num_batches_per_get_parameter);
  trainer.init(config);
  EXPECT_EQ(checkRemoteParameterUpdater(trainer), 0);

  FLAGS_local = 1;
}

TEST(checkRemoteUpdater, cpuTrainer) {
  checkRemoteParameterUpdaterTest(configFile1, false, false);
}

TEST(checkRemoteUpdater, cpuTrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, false, false, 1, true);
}

270
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
TEST(checkRemoteUpdater, gpuTrainer) {
  checkRemoteParameterUpdaterTest(configFile1, true, false);
}

TEST(checkRemoteUpdater, gpu2Trainer) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 2);
}

TEST(checkRemoteUpdater, gpu4Trainer) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 4);
}

TEST(checkRemoteUpdater, gpuTrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 1, true);
}

TEST(checkRemoteUpdater, gpu2TrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 2, true);
}

TEST(checkRemoteUpdater, gpu4TrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 4, true);
}

#endif

TEST(checkRemoteUpdater, cpuDeltaTrainer) {
  checkRemoteParameterUpdaterTest(configFile1, false, false, 1, false, 10);
}

TEST(checkRemoteUpdater, cpuDeltaTrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, false, false, 1, true, 10);
}

305 306 307 308
TEST(SgdThreadUpdater, simpleSparseNN) {
  trainerOnePassTest(configFileSimpleSparse, false, false, 1, 0.5, true);
}

Z
zhangjinchao01 已提交
309
int main(int argc, char** argv) {
310
  testing::InitGoogleTest(&argc, argv);
Z
zhangjinchao01 已提交
311 312 313 314 315 316 317 318
  initMain(argc, argv);
  initPython(argc, argv);
  gNumDevices = hl_get_device_count();

  FLAGS_num_passes = 1;          // train one pass
  FLAGS_saving_period = 100000;  // do not save parameteres
  return RUN_ALL_TESTS();
}