ExpandConvLayer.cpp 9.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "ExpandConvLayer.h"

namespace paddle {

REGISTER_LAYER(exconv, ExpandConvLayer);

bool ExpandConvLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
  ConvBaseLayer::init(layerMap, parameterMap);

  /* Initialize the projection */
  for (auto &inputConfig : config_.inputs()) {
    const ConvConfig &conf = inputConfig.conv_conf();
    subM_.push_back(numFilters_ / conf.groups());
    subN_.push_back(conf.output_x() * conf.output_x());
    subK_.push_back(conf.channels() * conf.filter_size() * conf.filter_size() /
                    conf.groups());
    /* Consistent caffe mode for multiple input */
    caffeMode_ = conf.caffe_mode();
  }

40 41 42 43 44 45 46 47 48 49 50 51 52
  /* initialize the weightList */
  CHECK(inputLayers_.size() == parameters_.size());
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    size_t height, width;
    height = filterPixels_[i] * filterChannels_[i];
    width = numFilters_;

    // create a new weight
    CHECK_EQ(parameters_[i]->getSize(), width * height);
    Weight* w = new Weight(height, width, parameters_[i]);
    weights_.emplace_back(w);
  }

Z
zhangjinchao01 已提交
53 54 55
  return true;
}

56
size_t ExpandConvLayer::getOutputSize() {
Z
zhangjinchao01 已提交
57
  CHECK_NE(inputLayers_.size(), 0UL);
58
  size_t layerSize = ConvBaseLayer::calOutputSize();
Z
zhangjinchao01 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  subN_.clear();
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    subN_.push_back(outputH_[i] * outputW_[i]);
  }
  return layerSize;
}


void ExpandConvLayer::expandOneFrame(MatrixPtr image, size_t startIdx,
                                     int inIdx) {
  resetExpandInput(subK_[inIdx] * groups_[inIdx], subN_[inIdx]);
  real *imgData = image->getData() + startIdx * image->getWidth();
  MatrixPtr imageTmp = Matrix::create(
      imgData, 1, imgSizeH_[inIdx] * imgSizeW_[inIdx] * channels_[inIdx], false,
      useGpu_);
  expandInput_->convExpand(*imageTmp, imgSizeH_[inIdx], imgSizeW_[inIdx],
                           channels_[inIdx], filterSize_[inIdx],
                           filterSize_[inIdx], stride_[inIdx], stride_[inIdx],
                           padding_[inIdx], padding_[inIdx],
                           outputH_[inIdx], outputW_[inIdx]);
  imageTmp->clear();
}

void ExpandConvLayer::expandFwdOnce(MatrixPtr image, int inIdx, int startIdx) {
  int subM = subM_[inIdx];
  int subN = subN_[inIdx];
  int subK = subK_[inIdx];

  expandOneFrame(image, startIdx, inIdx);

  real *outData =
      getOutputValue()->getData() + startIdx * subN * numFilters_;

  real *wgtData = weights_[inIdx]->getW()->getData();
  real *expInData = expandInput_->getData();
  for (int g = 0; g < groups_[inIdx]; ++g) {
    MatrixPtr A =
        Matrix::create(wgtData, subK, subM, true, useGpu_);  // mark transpose
    MatrixPtr B = Matrix::create(expInData, subK, subN, false, useGpu_);
    MatrixPtr C = Matrix::create(outData, subM, subN, false, useGpu_);
    C->mul(A, B, 1, 1);

    A->clear();
    B->clear();
    C->clear();
    wgtData += subK * subM;
    expInData += subK * subN;
    outData += subM * subN;
  }
}

void ExpandConvLayer::addSharedBias() {
111
  size_t mapW = getOutputValue()->getWidth() / numFilters_;
Z
zhangjinchao01 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  size_t mapH = getOutputValue()->getElementCnt() / mapW;
  MatrixPtr out =
      Matrix::create(getOutputValue()->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  out->transpose(transOutValue_, false);  // false means no memory allocation
  transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
                          numFilters_);

  MatrixPtr bias =
      Matrix::create(biases_->getW()->getData(), 1,
                     biases_->getW()->getElementCnt(), false, useGpu_);
  transOutValue_->addBias(*bias, 1.0f);

  transOutValue_->reshape(mapW, mapH);
  transOutValue_->transpose(out, false);  // false means no memory allocation



void ExpandConvLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  /* note: one sample correspond to one colum, and the
   *   transOutValue correspond sample to one row */
  int batchSize = inputLayers_[0]->getOutputValue()->getWidth();
  batchSize = inputLayers_[0]->getOutputValue()->getHeight();
140
  resetOutput(batchSize, getOutputSize());
Z
zhangjinchao01 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

  MatrixPtr image = nullptr;
  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    LayerPtr prevLayer = getPrev(i);
    image = prevLayer->getOutputValue();
    for (size_t off = 0; off < image->getHeight(); off++) {
      REGISTER_TIMER_INFO("expandFwdOnce", getName().c_str());
      expandFwdOnce(image, i, off);
    }
  }
  /* add the bias-vector */
  if (biases_.get() != NULL) {
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void ExpandConvLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
165
  size_t mapW = v->getWidth() / numFilters_;
Z
zhangjinchao01 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  size_t mapH = v->getElementCnt() / mapW;
  MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_);

  Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);

  vTmp->transpose(transOutValue_, false);  // false means no memory allocation
  vTmp->reshape(transOutValue_->getElementCnt() / numFilters_, numFilters_);
  biases->collectBias(*vTmp, 1.0f);
}

void ExpandConvLayer::bpropBiases(MatrixPtr v) {
  MatrixPtr biases =
      Matrix::create(biases_->getWGrad()->getData(), 1,
                     biases_->getWGrad()->getElementCnt(), false, useGpu_);
  if (sharedBiases_) {
    bpropSharedBias(biases, v);
  } else {
    biases->collectBias(*v, 1.0f);
  }
  biases->clear();
}

void ExpandConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(outGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    /* First, calculate the input layers error */
    bpropActs(outGrad, i);
    if (weights_[i]->getWGrad()) {
      /* Then, calculate the W-gradient for the current layer */
      bpropWeights(outGrad, i);
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

void ExpandConvLayer::bpropWeights(MatrixPtr v, int inpIdx) {
  MatrixPtr weightGrad = weights_[inpIdx]->getWGrad();
  MatrixPtr inputV = getPrev(inpIdx)->getOutputValue();

  int subM = subM_[inpIdx];
  int subN = subN_[inpIdx];
  int subK = subK_[inpIdx];
  size_t batchSize = inputV->getHeight();
  resetExpandInput(subK * groups_[inpIdx], subN);
  resetConvOutput(batchSize, inpIdx);

  real *gradData = v->getData();

  for (size_t n = 0; n < batchSize; n++) {  // frame by frame
    // expand
    expandOneFrame(inputV, n, inpIdx);
    real *wGradData = weightGrad->getData();
    real *expandInData = expandInput_->getData();

    // expand-mul one-group by one
    for (int g = 0; g < groups_[inpIdx]; g++) {
      MatrixPtr A = Matrix::create(expandInData, subK, subN, false, useGpu_);
      MatrixPtr B = Matrix::create(gradData, subM, subN, true, useGpu_);
      MatrixPtr C = Matrix::create(wGradData, subK, subM, false, useGpu_);
      C->mul(A, B, 1, 1);

      A->clear();
      B->clear();
      C->clear();
      gradData += subM * subN;
      wGradData += subK * subM;
      expandInData += subK * subN;
    }
  }
}

void ExpandConvLayer::bpropActs(MatrixPtr v, int inpIdx) {
  LayerPtr prevLayer = getPrev(inpIdx);
  if (NULL == prevLayer->getOutputGrad()) {
    return;
  }

  int subM = subM_[inpIdx];
  int subN = subN_[inpIdx];
  int subK = subK_[inpIdx];
  size_t batchSize = v->getHeight();
  MatrixPtr tgtGrad = prevLayer->getOutputGrad();

  /* reset the expand-grad memory */
  resetExpandInput(subK * groups_[inpIdx], subN);
  resetConvOutput(batchSize, inpIdx);

  real *localGradData = v->getData();
  real *tgtGradData = tgtGrad->getData();
  for (size_t n = 0; n < batchSize; n++) {
    real *wgtData = weights_[inpIdx]->getW()->getData();
    real *expandInData = expandInput_->getData();

    for (int g = 0; g < groups_[inpIdx]; g++) {
      // create temporary matrix
      MatrixPtr C = Matrix::create(expandInData, subK, subN, false, useGpu_);
      MatrixPtr B = Matrix::create(localGradData, subM, subN, false, useGpu_);
      MatrixPtr A = Matrix::create(wgtData, subK, subM, false, useGpu_);
      C->mul(A, B);  // mul

      // clear the temporary matrix
      A->clear();
      B->clear();
      C->clear();

      expandInData += subK * subN;
      localGradData += subM * subN;
      wgtData += subK * subM;
    }

    // shrink one frame outGrad
    MatrixPtr oneGradTmp = Matrix::create(
        expandInput_->getData(), subK * groups_[inpIdx], subN, false, useGpu_);
    MatrixPtr vTmp = Matrix::create(
        tgtGradData, 1,
        imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channels_[inpIdx], false,
        useGpu_);
    vTmp->convShrink(*oneGradTmp, imgSizeH_[inpIdx], imgSizeW_[inpIdx],
                     channels_[inpIdx], filterSize_[inpIdx],
                     filterSize_[inpIdx], stride_[inpIdx], stride_[inpIdx],
                     padding_[inpIdx], padding_[inpIdx],
                     outputH_[inpIdx], outputW_[inpIdx], 1.0f, 1.0f);
    vTmp->clear();
    oneGradTmp->clear();

    // move the data-pointer
    tgtGradData += imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channels_[inpIdx];
  }
}

}  // namespace paddle