box_wrapper.cu 7.0 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifdef PADDLE_WITH_BOX_PS
#include <algorithm>
#include <ctime>
#include <memory>
#include <numeric>
#include "paddle/fluid/framework/fleet/box_wrapper.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/platform/gpu_info.h"

namespace paddle {
namespace framework {
#define CUDA_KERNEL_LOOP(i, n)                                 \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

__global__ void PullCopy(float** dest, const boxps::FeatureValueGpu* src,
                         const int64_t* len, int hidden, int slot_num,
                         int total_len, uint64_t** keys) {
  CUDA_KERNEL_LOOP(i, total_len) {
    int low = 0;
    int high = slot_num - 1;
    while (low < high) {
      int mid = (low + high) / 2;
      if (i < len[mid])
        high = mid;
      else
        low = mid + 1;
    }
    int x = low;
    int y = i - (x ? len[x - 1] : 0);
    if (*(keys[x] + y) == 0) {
      *(dest[x] + y * hidden) = 0;
      *(dest[x] + y * hidden + 1) = 0;
      *(dest[x] + y * hidden + 2) = 0;
    } else {
      *(dest[x] + y * hidden) = (src + i)->show;
      *(dest[x] + y * hidden + 1) = (src + i)->clk;
      *(dest[x] + y * hidden + 2) = (src + i)->embed_w;
    }
    if ((src + i)->embedding_size == 0 || *(keys[x] + y) == 0) {
      for (int j = 0; j < 8; j++) {
        *(dest[x] + y * hidden + 3 + j) = 0;
      }
    } else {
      for (int j = 0; j < 8; j++) {
        *(dest[x] + y * hidden + 3 + j) = (src + i)->embedx[1 + j];
      }
    }
  }
}

__global__ void CopyKeysKernel(uint64_t** src_keys, uint64_t* dest_total_keys,
                               const int64_t* len, int slot_num,
                               int total_len) {
  CUDA_KERNEL_LOOP(i, total_len) {
    int low = 0;
    int high = slot_num - 1;
    while (low < high) {
      int mid = (low + high) / 2;
      if (i < len[mid])
        high = mid;
      else
        low = mid + 1;
    }
    int x = low;
    int y = i - (x ? len[x - 1] : 0);
    dest_total_keys[i] = src_keys[x][y];
  }
}

__global__ void PushCopy(boxps::FeaturePushValueGpu* dest, float** src,
                         int64_t* len, int hidden, int slot_num, int total_len,
                         int bs, int* slot_vector) {
  CUDA_KERNEL_LOOP(i, total_len) {
    int low = 0;
    int high = slot_num - 1;
    while (low < high) {
      int mid = (low + high) / 2;
      if (i < len[mid])
        high = mid;
      else
        low = mid + 1;
    }
    int x = low;
    int y = i - (x ? len[low - 1] : 0);
    (dest + i)->slot = slot_vector[x];
    (dest + i)->show = *(src[x] + y * hidden);
    (dest + i)->clk = *(src[x] + y * hidden + 1);
    (dest + i)->embed_g = *(src[x] + y * hidden + 2) * -1. * bs;
    for (int j = 0; j < 8; j++) {
      (dest + i)->embedx_g[j] = *(src[x] + y * hidden + 3 + j) * -1. * bs;
    }
  }
}

void BoxWrapper::CopyForPull(const paddle::platform::Place& place,
                             uint64_t** gpu_keys,
                             const std::vector<float*>& values,
                             const boxps::FeatureValueGpu* total_values_gpu,
                             const int64_t* gpu_len, const int slot_num,
                             const int hidden_size,
                             const int64_t total_length) {
  auto stream = dynamic_cast<platform::CUDADeviceContext*>(
                    platform::DeviceContextPool::Instance().Get(
119
                        BOOST_GET_CONST(platform::CUDAPlace, place)))
H
hutuxian 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                    ->stream();
  auto buf_value = memory::AllocShared(place, values.size() * sizeof(float*));
  float** gpu_values = reinterpret_cast<float**>(buf_value->ptr());
  cudaMemcpy(gpu_values, values.data(), values.size() * sizeof(float*),
             cudaMemcpyHostToDevice);

  PullCopy<<<(total_length + 512 - 1) / 512, 512, 0, stream>>>(
      gpu_values, total_values_gpu, gpu_len, hidden_size, slot_num,
      total_length, gpu_keys);
  cudaStreamSynchronize(stream);
}

void BoxWrapper::CopyKeys(const paddle::platform::Place& place,
                          uint64_t** origin_keys, uint64_t* total_keys,
                          const int64_t* gpu_len, int slot_num, int total_len) {
  auto stream = dynamic_cast<platform::CUDADeviceContext*>(
                    platform::DeviceContextPool::Instance().Get(
137
                        BOOST_GET_CONST(platform::CUDAPlace, place)))
H
hutuxian 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151
                    ->stream();
  CopyKeysKernel<<<(total_len + 512 - 1) / 512, 512, 0, stream>>>(
      origin_keys, total_keys, gpu_len, slot_num, total_len);
  cudaStreamSynchronize(stream);
}

void BoxWrapper::CopyForPush(const paddle::platform::Place& place,
                             const std::vector<const float*>& grad_values,
                             boxps::FeaturePushValueGpu* total_grad_values_gpu,
                             const std::vector<int64_t>& slot_lengths,
                             const int hidden_size, const int64_t total_length,
                             const int batch_size) {
  auto stream = dynamic_cast<platform::CUDADeviceContext*>(
                    platform::DeviceContextPool::Instance().Get(
152
                        BOOST_GET_CONST(platform::CUDAPlace, place)))
H
hutuxian 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
                    ->stream();
  auto slot_lengths_lod = slot_lengths;
  for (int i = 1; i < slot_lengths_lod.size(); i++) {
    slot_lengths_lod[i] += slot_lengths_lod[i - 1];
  }
  auto buf_grad_value =
      memory::AllocShared(place, grad_values.size() * sizeof(float*));
  auto buf_length =
      memory::AllocShared(place, slot_lengths.size() * sizeof(int64_t));
  auto buf_slot_vector =
      memory::AllocShared(place, slot_lengths_lod.size() * sizeof(int));

  float** gpu_values = reinterpret_cast<float**>(buf_grad_value->ptr());
  int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
  int* d_slot_vector = reinterpret_cast<int*>(buf_slot_vector->ptr());

  cudaMemcpy(gpu_values, grad_values.data(),
             grad_values.size() * sizeof(float*), cudaMemcpyHostToDevice);
  cudaMemcpy(gpu_len, slot_lengths_lod.data(),
             slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);
  cudaMemcpy(d_slot_vector, slot_vector_.data(),
             slot_lengths_lod.size() * sizeof(int), cudaMemcpyHostToDevice);

  PushCopy<<<(total_length + 512 - 1) / 512, 512, 0, stream>>>(
      total_grad_values_gpu, gpu_values, gpu_len, hidden_size,
      slot_lengths.size(), total_length, batch_size, d_slot_vector);
  cudaStreamSynchronize(stream);
}
}  // end namespace framework
}  // end namespace paddle
#endif