test_gaussian_random_op.py 9.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18
import numpy as np
L
Leo Chen 已提交
19
import paddle
20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
24
from op_test import OpTest
25
import paddle
26 27


28
class TestGaussianRandomOp(OpTest):
D
dzhwinter 已提交
29 30
    def setUp(self):
        self.op_type = "gaussian_random"
31
        self.set_attrs()
D
dzhwinter 已提交
32
        self.inputs = {}
M
mozga-intel 已提交
33 34
        self.use_mkldnn = False
        self.attrs = {
35
            "shape": [123, 92],
36 37
            "mean": self.mean,
            "std": self.std,
M
mozga-intel 已提交
38 39 40
            "seed": 10,
            "use_mkldnn": self.use_mkldnn
        }
C
cnn 已提交
41
        paddle.seed(10)
D
dzhwinter 已提交
42

43
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
D
dzhwinter 已提交
44

45 46 47 48
    def set_attrs(self):
        self.mean = 1.0
        self.std = 2.

49 50
    def test_check_output(self):
        self.check_output_customized(self.verify_output)
51

52 53 54 55 56 57 58 59 60 61 62 63 64
    def verify_output(self, outs):
        self.assertEqual(outs[0].shape, (123, 92))
        hist, _ = np.histogram(outs[0], range=(-3, 5))
        hist = hist.astype("float32")
        hist /= float(outs[0].size)
        data = np.random.normal(size=(123, 92), loc=1, scale=2)
        hist2, _ = np.histogram(data, range=(-3, 5))
        hist2 = hist2.astype("float32")
        hist2 /= float(outs[0].size)
        self.assertTrue(
            np.allclose(
                hist, hist2, rtol=0, atol=0.01),
            "hist: " + str(hist) + " hist2: " + str(hist2))
65

D
dongzhihong 已提交
66

67 68 69 70 71 72
class TestMeanStdAreInt(TestGaussianRandomOp):
    def set_attrs(self):
        self.mean = 1
        self.std = 2


73 74 75 76 77 78 79 80 81 82 83
# Situation 2: Attr(shape) is a list(with tensor)
class TestGaussianRandomOp_ShapeTensorList(TestGaussianRandomOp):
    def setUp(self):
        '''Test gaussian_random op with specified value
        '''
        self.op_type = "gaussian_random"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))
D
dzhwinter 已提交
84

85 86 87 88 89 90 91
        self.attrs = {
            'shape': self.infer_shape,
            'mean': self.mean,
            'std': self.std,
            'seed': self.seed,
            'use_mkldnn': self.use_mkldnn
        }
D
dzhwinter 已提交
92

93 94
        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
D
dzhwinter 已提交
95

96 97 98 99 100 101 102
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10
D
dzhwinter 已提交
103

104 105
    def test_check_output(self):
        self.check_output_customized(self.verify_output)
106

M
mozga-intel 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
class TestGaussianRandomOp2_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


class TestGaussianRandomOp3_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.use_mkldnn = True
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


class TestGaussianRandomOp4_ShapeTensorList(
        TestGaussianRandomOp_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10
139

140 141 142

# Situation 3: shape is a tensor
class TestGaussianRandomOp1_ShapeTensor(TestGaussianRandomOp):
143
    def setUp(self):
144 145
        '''Test gaussian_random op with specified value
        '''
146
        self.op_type = "gaussian_random"
147
        self.init_data()
148
        self.use_mkldnn = False
149 150

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
151
        self.attrs = {
152 153 154 155
            'mean': self.mean,
            'std': self.std,
            'seed': self.seed,
            'use_mkldnn': self.use_mkldnn
156
        }
157
        self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    def init_data(self):
        self.shape = [123, 92]
        self.use_mkldnn = False
        self.mean = 1.0
        self.std = 2.0
        self.seed = 10


# Test python API
class TestGaussianRandomAPI(unittest.TestCase):
    def test_api(self):
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2000)

        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 500)
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32")

        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64")

        out_1 = fluid.layers.gaussian_random(
            shape=[2000, 500], dtype="float32", mean=0.0, std=1.0, seed=10)

        out_2 = fluid.layers.gaussian_random(
            shape=[2000, positive_2_int32],
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_3 = fluid.layers.gaussian_random(
            shape=[2000, positive_2_int64],
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_4 = fluid.layers.gaussian_random(
            shape=shape_tensor_int32,
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_5 = fluid.layers.gaussian_random(
            shape=shape_tensor_int64,
            dtype="float32",
            mean=0.,
            std=1.0,
            seed=10)

        out_6 = fluid.layers.gaussian_random(
            shape=shape_tensor_int64,
            dtype=np.float32,
            mean=0.,
            std=1.0,
            seed=10)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6 = exe.run(
            fluid.default_main_program(),
            feed={
                "shape_tensor_int32": np.array([2000, 500]).astype("int32"),
                "shape_tensor_int64": np.array([2000, 500]).astype("int64"),
            },
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6])

        self.assertAlmostEqual(np.mean(res_1), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_1), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_2), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_2), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_3), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_3), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_4), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_5), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_5), 1., delta=0.1)
        self.assertAlmostEqual(np.mean(res_6), 0.0, delta=0.1)
        self.assertAlmostEqual(np.std(res_6), 1., delta=0.1)
238

239 240 241
    def test_default_dtype(self):
        paddle.disable_static()

242
        def test_default_fp16():
243
            paddle.framework.set_default_dtype('float16')
244
            paddle.tensor.random.gaussian([2, 3])
245

246
        self.assertRaises(TypeError, test_default_fp16)
247

248
        def test_default_fp32():
249
            paddle.framework.set_default_dtype('float32')
250
            out = paddle.tensor.random.gaussian([2, 3])
251 252
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)

253
        def test_default_fp64():
254
            paddle.framework.set_default_dtype('float64')
255
            out = paddle.tensor.random.gaussian([2, 3])
256 257
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)

258 259
        test_default_fp64()
        test_default_fp32()
260 261 262 263 264 265 266 267

        paddle.enable_static()


class TestStandardNormalDtype(unittest.TestCase):
    def test_default_dtype(self):
        paddle.disable_static()

268
        def test_default_fp16():
269 270 271
            paddle.framework.set_default_dtype('float16')
            paddle.tensor.random.standard_normal([2, 3])

272
        self.assertRaises(TypeError, test_default_fp16)
273

274
        def test_default_fp32():
275 276 277 278
            paddle.framework.set_default_dtype('float32')
            out = paddle.tensor.random.standard_normal([2, 3])
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32)

279
        def test_default_fp64():
280 281 282 283
            paddle.framework.set_default_dtype('float64')
            out = paddle.tensor.random.standard_normal([2, 3])
            self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64)

284 285
        test_default_fp64()
        test_default_fp32()
286 287 288

        paddle.enable_static()

289

Q
qijun 已提交
290
if __name__ == "__main__":
291
    unittest.main()