sequence_slice_op.h 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/strided_memcpy.h"
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename T>
28
inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data,
D
dzhwinter 已提交
29
                            const int64_t* length_data) {
30
  auto out_lod = in.lod();
31 32
  size_t lod_offset = 0;

33
  auto n = in.lod()[0].size() - 1;
34 35
  out_lod[0][0] = 0;
  for (size_t i = 0; i < n; ++i) {
36
    lod_offset += length_data[i];
D
dzhwinter 已提交
37
    out_lod[0][i + 1] = lod_offset;
38 39 40 41
  }
  return out_lod;
}

Q
QI JUN 已提交
42
template <typename DeviceContext, typename T>
43
class SequenceSliceOpKernel : public framework::OpKernel<T> {
44 45 46
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<LoDTensor>("X");
47 48
    auto* offset = ctx.Input<Tensor>("Offset");
    auto* length = ctx.Input<Tensor>("Length");
49 50
    auto* out = ctx.Output<LoDTensor>("Out");

51
    auto lod = in->lod();
52 53 54
    PADDLE_ENFORCE_EQ(
        lod.empty(), false,
        "Input(X) Tensor of SequenceSliceOp does not contain LoD information.");
55

56
    auto n = lod[0].size() - 1;
D
dzhwinter 已提交
57
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
58
    PADDLE_ENFORCE_EQ(
W
wanghaox 已提交
59
        n, static_cast<size_t>(length->dims()[0]),
60
        "The size of input-sequence and length-array should be the same");
61
    PADDLE_ENFORCE_EQ(
W
wanghaox 已提交
62
        n, static_cast<size_t>(offset->dims()[0]),
63
        "The size of input-sequence and offset-array should be the same");
64

65 66
    const int64_t* offset_data = offset->data<int64_t>();
    const int64_t* length_data = length->data<int64_t>();
67 68
    framework::Tensor offset_cpu;
    framework::Tensor length_cpu;
69 70 71

    if (platform::is_gpu_place(ctx.GetPlace())) {
      offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
F
fengjiayi 已提交
72
      framework::TensorCopySync(*offset, platform::CPUPlace(), &offset_cpu);
73 74 75
      offset_data = offset_cpu.data<int64_t>();

      length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
F
fengjiayi 已提交
76
      framework::TensorCopySync(*length, platform::CPUPlace(), &length_cpu);
77 78
      length_data = length_cpu.data<int64_t>();
    }
79 80

    for (size_t i = 0; i < n; ++i) {
K
ktlichkid 已提交
81
      PADDLE_ENFORCE_LE(0, offset_data[i],
82 83 84
                        "The offset[%d] must be nonnegative.", i);
      PADDLE_ENFORCE_LE(0, length_data[i],
                        "The length[%d] must be nonnegative.", i);
K
ktlichkid 已提交
85
      PADDLE_ENFORCE_LE(lod[0][i] + offset_data[i] + length_data[i],
86
                        lod[0][i + 1], "The target tensor's length overflow.");
W
wanghaox 已提交
87
    }
88 89

    out->mutable_data<T>(ctx.GetPlace());
90
    auto out_lod = SequenceSliceLoD(*in, offset_data, length_data);
91 92 93
    auto out_dims = in->dims();
    out_dims[0] = out_lod[0][out_lod[0].size() - 1];
    out->Resize(out_dims);
94 95 96 97 98 99 100
    out->set_lod(out_lod);

    auto in_stride = framework::stride(in->dims());
    auto out_stride = framework::stride(out->dims());

    size_t out_offset = 0;
    for (size_t i = 0; i < n; ++i) {
101
      if (length_data[i] == 0) continue;
D
dzhwinter 已提交
102 103 104 105 106 107
      Tensor in_t = in->Slice(
          static_cast<int>(lod[0][i] + offset_data[i]),
          static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));

      StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride,
                       in_t.dims(), out_stride, out->data<T>() + out_offset);
108
      out_offset += length_data[i] * in_stride[0];
109 110 111 112
    }
  }
};

Q
QI JUN 已提交
113
template <typename DeviceContext, typename T>
114
class SequenceSliceGradOpKernel : public framework::OpKernel<T> {
115 116 117
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<LoDTensor>("X");
118 119
    auto* offset = ctx.Input<Tensor>("Offset");
    auto* length = ctx.Input<Tensor>("Length");
120 121 122 123 124
    auto* out_grad =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto* x_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));

125 126
    const int64_t* offset_data = offset->data<int64_t>();
    const int64_t* length_data = length->data<int64_t>();
W
wanghaox 已提交
127 128
    framework::Tensor offset_cpu;
    framework::Tensor length_cpu;
129

130 131
    if (platform::is_gpu_place(ctx.GetPlace())) {
      offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
F
fengjiayi 已提交
132
      framework::TensorCopySync(*offset, platform::CPUPlace(), &offset_cpu);
133
      offset_data = offset_cpu.data<int64_t>();
134

135
      length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
F
fengjiayi 已提交
136
      framework::TensorCopySync(*length, platform::CPUPlace(), &length_cpu);
137
      length_data = length_cpu.data<int64_t>();
138 139
    }

140
    auto lod = in->lod();
141 142
    // to avoid out_grad missing lod, compute lod again
    auto out_lod = SequenceSliceLoD(*in, offset_data, length_data);
143

W
wanghaox 已提交
144 145
    if (x_grad) {
      x_grad->mutable_data<T>(ctx.GetPlace());
W
wanghaox 已提交
146
      x_grad->set_lod(in->lod());
Q
QI JUN 已提交
147 148 149
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.template device_context<DeviceContext>(), x_grad,
               static_cast<T>(0));
150

W
wanghaox 已提交
151
      for (size_t i = 0; i < out_lod[0].size() - 1; ++i) {
152
        if (length_data[i] == 0) continue;
W
wanghaox 已提交
153 154 155 156
        Tensor out_grad_t =
            out_grad->Slice(static_cast<int>(out_lod[0][i]),
                            static_cast<int>(out_lod[0][i + 1]));
        auto out_grad_stride = framework::stride(out_grad_t.dims());
157

W
wanghaox 已提交
158
        auto x_grad_stride = framework::stride(x_grad->dims());
159

W
wanghaox 已提交
160 161 162
        Tensor x_grad_t = x_grad->Slice(
            static_cast<int>(lod[0][i] + offset_data[i]),
            static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));
163

W
wanghaox 已提交
164
        StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>(),
D
dzhwinter 已提交
165 166
                         out_grad_stride, out_grad_t.dims(), x_grad_stride,
                         x_grad_t.data<T>());
W
wanghaox 已提交
167
      }
168 169 170 171 172 173
    }
  }
};

}  // namespace operators
}  // namespace paddle