execution_context.h 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <string>
#include <vector>
#include "paddle/fluid/eager/eager_tensor.h"
#include "paddle/fluid/eager/legacy/type_def.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/framework/variable.h"
namespace egr {

class EagerExecutionContext : public paddle::framework::ExecutionContext {
  using Variable = paddle::framework::Variable;

 public:
  EagerExecutionContext(const paddle::framework::OperatorBase& op,
                        const paddle::framework::Scope& scope,
                        const paddle::platform::DeviceContext& device_context,
                        const paddle::framework::RuntimeContext& ctx,
                        const NameTensorMap& tensor_map_in,
                        const NameTensorMap& tensor_map_out,
                        const paddle::framework::AttributeMap& attrs,
                        const paddle::framework::AttributeMap& default_attrs)
      : ExecutionContext(op, scope, device_context, ctx),
        tensor_map_in_(tensor_map_in),
        tensor_map_out_(tensor_map_out),
        attrs_(attrs),
        default_attrs_(default_attrs) {}

  std::string InputName(const std::string& name) const override {
    auto it = tensor_map_in_.find(name);
    PADDLE_ENFORCE_NE(it, tensor_map_in_.end(),
                      paddle::platform::errors::PreconditionNotMet(
                          "Can not find [%s] in Input", name));
    // TODO(jiabin): This is used for egr::EagerTensor temporally,
    // once we have name, remove it.
    return it->second[0] ? it->second[0]->name()
                         : paddle::framework::kEmptyVarName;
  }

  std::vector<std::string> InputNames(const std::string& name) const override {
    auto it = tensor_map_in_.find(name);
    PADDLE_ENFORCE_NE(
        it, tensor_map_in_.end(),
        paddle::platform::errors::NotFound("Can not find [%s] in Input", name));
    std::vector<std::string> vec_res;
    vec_res.reserve(it->second.size());
    for (size_t i = 0; i < it->second.size(); ++i) {
      if (it->second[i]) {
        // TODO(jiabin): This is used for egr::EagerTensor
        // temporally, once we have name, remove it.
        vec_res.push_back(it->second[i]->name());
      } else {
        vec_res.push_back(paddle::framework::kEmptyVarName);
      }
    }
    return vec_res;
  }

  std::string OutputName(const std::string& name) const override {
    auto it = tensor_map_out_.find(name);
    PADDLE_ENFORCE_NE(it, tensor_map_out_.end(),
                      paddle::platform::errors::NotFound(
                          "Can not find [%s] in Output", name));
    return it->second[0] ? it->second[0]->name()
                         : paddle::framework::kEmptyVarName;
  }

  std::vector<std::string> OutputNames(const std::string& name) const override {
    auto it = tensor_map_out_.find(name);
    PADDLE_ENFORCE_NE(it, tensor_map_out_.end(),
                      paddle::platform::errors::NotFound(
                          "Can not find [%s] in Output", name));
    std::vector<std::string> vec_res;
    vec_res.reserve(it->second.size());
    for (size_t i = 0; i < it->second.size(); ++i) {
      if (it->second[i]) {
        vec_res.push_back(it->second[i]->name());
      } else {
        vec_res.push_back(paddle::framework::kEmptyVarName);
      }
    }
    return vec_res;
  }

  bool HasAttr(const std::string& name) const override {
    return attrs_.count(name) != 0 || default_attrs_.count(name) != 0;
  }

  const paddle::framework::AttributeMap& Attrs() const override {
    return attrs_;
  }

  const paddle::framework::Attribute& GetAttr(
      const std::string& name) const override {
    auto it = attrs_.find(name);

    if (it == attrs_.end()) {
      it = default_attrs_.find(name);
      if (it == default_attrs_.end()) {
        PADDLE_THROW(paddle::platform::errors::NotFound(
            "Can not find [%s] in attributes of op %s.", name,
            this->GetOp().Type()));
      }
    }

    return it->second;
  }

  std::vector<std::string> InNameList() const override {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(tensor_map_in_.size());

    for (auto& v : tensor_map_in_) {
      vec_temp.push_back(v.first);
    }

    return vec_temp;
  }

  bool HasInput(const std::string& name) const override {
    auto it = tensor_map_in_.find(name);
    return (it != tensor_map_in_.end() && it->second.size() > 0);
  }

  bool HasOutput(const std::string& name) const override {
    auto it = tensor_map_out_.find(name);
    return (it != tensor_map_out_.end() && it->second.size() > 0);
  }

  size_t InputSize(const std::string& name) const override {
    return InputNames(name).size();
  }

  size_t OutputSize(const std::string& name) const override {
    return OutputNames(name).size();
  }

  const Variable* InputVar(const std::string& name) const override {
    auto it = tensor_map_in_.find(name);
    if (it == tensor_map_in_.end()) {
      return nullptr;
    }

    return it->second.empty() || it->second[0] == nullptr
               ? nullptr
               : it->second[0]->MutableVar();
  }

  Variable* OutputVar(const std::string& name) const override {
    auto it = tensor_map_out_.find(name);
    if (it == tensor_map_out_.end()) {
      return nullptr;
    }

    return it->second.empty() || it->second[0] == nullptr
               ? nullptr
               : it->second[0]->MutableVar();
  }

  const std::vector<Variable*> MultiInputVar(
      const std::string& name) const override {
    auto it = tensor_map_in_.find(name);
    if (it == tensor_map_in_.end()) {
      return {};
    }
    std::vector<Variable*> vec_res;
    vec_res.reserve(it->second.size());
    for (size_t i = 0; i < it->second.size(); ++i) {
      vec_res.push_back(it->second[i] ? it->second[i]->MutableVar() : nullptr);
    }

    return vec_res;
  }

  std::vector<Variable*> MultiOutputVar(
      const std::string& name) const override {
    auto it = tensor_map_out_.find(name);
    if (it == tensor_map_out_.end()) {
      return {};
    }
    std::vector<Variable*> vec_res;
    vec_res.reserve(it->second.size());
    for (size_t i = 0; i < it->second.size(); ++i) {
      vec_res.push_back(it->second[i] ? it->second[i]->MutableVar() : nullptr);
    }

    return vec_res;
  }

 private:
  const NameTensorMap& tensor_map_in_;
  const NameTensorMap& tensor_map_out_;
  const paddle::framework::AttributeMap& attrs_;
  const paddle::framework::AttributeMap& default_attrs_;
};

}  // namespace egr