extension.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the extention functions
16 17 18 19 20
from ...fluid.layers import add_position_encoding  #DEFINE_ALIAS
from ...fluid.layers import multiclass_nms  #DEFINE_ALIAS
from ...fluid.layers import target_assign  #DEFINE_ALIAS
from ...fluid.layers import temporal_shift  #DEFINE_ALIAS

21
__all__ = [
22 23 24 25 26 27 28 29 30
    'add_position_encoding',
    #       'autoincreased_step_counter',
    #       'continuous_value_model',
    #       'filter_by_instag',
    #       'linear_chain_crf',
    #       'merge_selected_rows',
    'multiclass_nms',
    #       'polygon_box_transform',
    #       'random_crop',
31
    'row_conv',
32 33 34 35 36
    #       'rpn_target_assign',
    #       'similarity_focus',
    'target_assign',
    'temporal_shift',
    #       'warpctc',
L
Li Fuchen 已提交
37
    'diag_embed'
38 39
]

L
Li Fuchen 已提交
40 41
import numpy as np
from ...fluid.data_feeder import check_dtype
42
from ...fluid.layer_helper import LayerHelper
L
Li Fuchen 已提交
43 44 45
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid.layers.tensor import assign
from ...fluid import core, dygraph_utils
46 47 48
from ...fluid.layers.layer_function_generator import templatedoc


L
Li Fuchen 已提交
49 50 51 52 53
def diag_embed(input, offset=0, dim1=-2, dim2=-1):
    """
    This OP creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2) 
    are filled by ``input``. By default, a 2D plane formed by the last two dimensions 
    of the returned tensor will be selected.
54

L
Li Fuchen 已提交
55
    The argument ``offset`` determines which diagonal is generated:
56

L
Li Fuchen 已提交
57 58 59
    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
60

L
Li Fuchen 已提交
61 62 63 64 65
    Args:
        input(Variable|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64.
        offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal).
        dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2.
        dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1.
66
    
L
Li Fuchen 已提交
67 68
    Returns:
        Variable, the output data type is the same as input data type.
69
    
L
Li Fuchen 已提交
70 71
    Examples:
        .. code-block:: python
72

L
Li Fuchen 已提交
73 74 75 76 77
            import paddle.nn.functional as F
            import paddle.fluid.dygraph as dg
            import numpy as np
            
            diag_embed = np.random.randn(2, 3).astype('float32')
78 79
            # [[ 0.7545889 , -0.25074545,  0.5929117 ],
            #  [-0.6097662 , -0.01753256,  0.619769  ]]
L
Li Fuchen 已提交
80 81
            with dg.guard():
                data1 = F.diag_embed(diag_embed)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
                data1.numpy()
                # [[[ 0.7545889 ,  0.        ,  0.        ],
                #  [ 0.        , -0.25074545,  0.        ],
                #   [ 0.        ,  0.        ,  0.5929117 ]],

                # [[-0.6097662 ,  0.        ,  0.        ],
                #  [ 0.        , -0.01753256,  0.        ],
                #  [ 0.        ,  0.        ,  0.619769  ]]]

                data2 = F.diag_embed(diag_embed, offset=-1, dim1=0, dim2=2)
                data2.numpy()
                # [[[ 0.        ,  0.        ,  0.        ,  0.        ],
                #   [ 0.7545889 ,  0.        ,  0.        ,  0.        ],
                #   [ 0.        , -0.25074545,  0.        ,  0.        ],
                #   [ 0.        ,  0.        ,  0.5929117 ,  0.        ]],
                #
                #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
                #   [-0.6097662 ,  0.        ,  0.        ,  0.        ],
                #   [ 0.        , -0.01753256,  0.        ,  0.        ],
                #   [ 0.        ,  0.        ,  0.619769  ,  0.        ]]]

                data3 = F.diag_embed(diag_embed, offset=1, dim1=0, dim2=2)
                data3.numpy()
                # [[[ 0.        ,  0.7545889 ,  0.        ,  0.        ],
                #   [ 0.        , -0.6097662 ,  0.        ,  0.        ]],
                #
                #  [[ 0.        ,  0.        , -0.25074545,  0.        ],
                #   [ 0.        ,  0.        , -0.01753256,  0.        ]],
                #
                #  [[ 0.        ,  0.        ,  0.        ,  0.5929117 ],
                #   [ 0.        ,  0.        ,  0.        ,  0.619769  ]],
                #
                #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
                #   [ 0.        ,  0.        ,  0.        ,  0.        ]]]
L
Li Fuchen 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128
    """
    inputs = {'Input': [input]}
    attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}

    if not isinstance(input, Variable):
        input = assign(input)

    def __check_input(input, offset, dim1, dim2):
        check_dtype(input.dtype, 'Input',
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'diag_embed')

        input_shape = list(input.shape)
129
        assert len(input_shape) >= 1,                     \
L
Li Fuchen 已提交
130 131
                "Input must be at least 1-dimensional, "   \
                "But received Input's dimensional: %s.\n" %  \
132
                len(input_shape)
L
Li Fuchen 已提交
133

134 135 136
        assert np.abs(dim1) <= len(input_shape),    \
            "Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape) + 1), len(input_shape), dim1)
L
Li Fuchen 已提交
137

138 139 140
        assert np.abs(dim2) <= len(input_shape),      \
            "Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape) + 1), len(input_shape), dim2)
L
Li Fuchen 已提交
141 142 143

        dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1
        dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1
144
        assert dim1_ != dim2_,       \
L
Li Fuchen 已提交
145
               "dim1 and dim2 cannot be the same dimension." \
146
                "But received dim1 = %d, dim2 = %d\n"%(dim1, dim2)
L
Li Fuchen 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

    if not in_dygraph_mode():
        __check_input(input, offset, dim1, dim2)
    helper = LayerHelper("diag_embed", **locals())

    out = helper.create_variable_for_type_inference(dtype=input.dtype)

    helper.append_op(
        type='diag_embed',
        inputs={'Input': [input]},
        attrs={'offset': offset,
               'dim1': dim1,
               'dim2': dim2},
        outputs={'Out': [out]})
    out.stop_gradient = True
    return out


165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
@templatedoc()
def row_conv(input, weight, act=None):
    """
    ${comment}

    Args:
        input (Variable):  the input(X) is a LodTensor or tensor, LodTensor(X) 
            supports variable  time-length input sequences. The underlying 
            tensor in this LoDTensor is a matrix with shape (T, D), where 
            T is the total time steps in this mini-batch and D is the input 
            data dimension. 
            If the input is a padded minibatch, the shape of the input is 
            (N, T, D), N is batch size, T is the max time steps in the batch,
             D is the input data dimension.
        weight (Variable): The weight. A Tensor with shape 
            (future_context_size + 1, D), where future_context_size is the 
            context size of the RowConv operator.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        ${out_comment}.

    Examples:
        .. code-block:: python

            from paddle import fluid, nn
            import paddle.fluid.dygraph as dg
            import paddle.nn.functional as F
            import numpy as np

            batch_size = 4
            time_steps = 8
            feature_size = 6
            context_size = 4
            x = np.random.randn(batch_size, time_steps, feature_size).astype(np.float32)
            weight = np.random.randn(context_size + 1, feature_size).astype(np.float32)

            place = fluid.CPUPlace()
            with dg.guard(place):
                x_var = dg.to_variable(x)
                w_var = dg.to_variable(weight)
                y_var = F.row_conv(x_var, w_var)
                y_np = y_var.numpy()

            print(y_np.shape)

            # (4, 8, 6)
    """

    if in_dygraph_mode():
        pre_act = core.ops.row_conv(input, weight)
        out = dygraph_utils._append_activation_in_dygraph(pre_act, act)
        return out
    else:
        helper = LayerHelper('row_conv', **locals())
        dtype = helper.input_dtype()

        inputs = {'X': [input], 'Filter': [weight]}
        pre_act = helper.create_variable_for_type_inference(dtype)
        outputs = {'Out': [pre_act]}
        helper.append_op(type='row_conv', inputs=inputs, outputs=outputs)
        out = helper.append_activation(pre_act)
    return out