CosSimOp.cpp 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "CosSimOp.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"

namespace paddle {
template <>
void CosSimForward<DEVICE_TYPE_CPU>(CpuMatrix* out_mat,
                                    const CpuMatrix* in1_mat,
                                    const CpuMatrix* in2_mat,
                                    real scale) {
  CHECK(out_mat && in1_mat && in2_mat);
  size_t num_samples = out_mat->getHeight();
  size_t dim = in1_mat->getWidth();
  /// column vector [nSamples, 1]
  real* out = out_mat->getData();
  const real* x = in1_mat->getData();
  const real* y = in2_mat->getData();

  /// in2 might only have one row or full rows
  CHECK(in2_mat->getHeight() == 1LU || in2_mat->getHeight() == num_samples);
  size_t inc = (in2_mat->getHeight() == 1LU) ? 0 : dim;
  for (size_t i = 0; i < num_samples; ++i, x += dim, y += inc) {
    real square_sum_x = 0;
    real square_sum_y = 0;
    real xy = 0;
    for (size_t j = 0; j < dim; ++j) {
      square_sum_x += x[j] * x[j];
      square_sum_y += y[j] * y[j];
      xy += x[j] * y[j];
    }
    CHECK(square_sum_x > 0 && square_sum_y > 0);
    out[i] = scale * xy / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
  }
}

/**
 * \param inputs[0] input matrix 1, size: nSamples * dim.
 * \param inputs[1] input matrix 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
 * \param outputs[0] output matrix, size : nSamples * 1.
 */

template <DeviceType Device>
class CosSimForwardFunc : public FunctionBase {
  void init(const FuncConfig& config) override {
    scale_ = config.get<real>("scale");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
    CHECK_EQ(inputs.size(), 2);
    CHECK_EQ(outputs.size(), 1);
    CHECK_EQ(inouts.size(), 0);

    CHECK_EQ(inputs[0].dims_[0], outputs[0].dims_[0]);
    CHECK_EQ(inputs[0].dims_[1], inputs[1].dims_[1]);
    CHECK_EQ(outputs[0].dims_[1], 1UL);

    CHECK(outputs[0].getData() && inputs[0].getData() && inputs[1].getData());
    auto out_mat = std::make_shared<typename MatrixT<Device>::type>(
        outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
    const auto in1_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
    const auto in2_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);

    CosSimForward<Device>(out_mat.get(), in1_mat.get(), in2_mat.get(), scale_);
  }

private:
  real scale_;
};

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
template <>
void CosSimBackward<DEVICE_TYPE_CPU>(const CpuMatrix* out_grad,
                                     const CpuMatrix* out_val,
                                     const CpuMatrix* in1_val,
                                     const CpuMatrix* in2_val,
                                     CpuMatrix* in1_grad,
                                     CpuMatrix* in2_grad,
                                     real scale) {
  CHECK(out_grad && out_val && in1_val && in2_val && in1_grad && in2_grad);
  CHECK_EQ(out_val->useGpu_, false) << "Matrix type are GPU, CPU required";

  const real* grad = out_grad->getData();
  const real* out = out_val->getData();
  const real* prev_out_x = in1_val->getData();
  const real* prev_out_y = in2_val->getData();
  real* prev_grad_x = in1_grad->getData();
  real* prev_grad_y = in2_grad->getData();

  size_t num_samples = out_grad->getHeight();
  size_t dim = in1_val->getWidth();
  CHECK_EQ(in2_val->getHeight(), in2_grad->getHeight());
  CHECK(in2_val->getHeight() == 1LU || in2_val->getHeight() == num_samples);
  size_t inc = (in2_val->getHeight() == 1LU) ? 0 : dim;
  for (size_t i = 0; i < num_samples; ++i,
              prev_out_x += dim,
              prev_out_y += inc,
              prev_grad_x += dim,
              prev_grad_y += inc) {
    real square_sum_x = 0;
    real square_sum_y = 0;
    real xy = 0;
    for (size_t j = 0; j < dim; ++j) {
      square_sum_x += prev_out_x[j] * prev_out_x[j];
      square_sum_y += prev_out_y[j] * prev_out_y[j];
      xy += prev_out_x[j] * prev_out_y[j];
    }
    CHECK(square_sum_x > 0 && square_sum_y > 0);
    if (xy == 0) {
      real reciprocal =
          1.0f / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
      for (size_t j = 0; j < dim; ++j) {
        prev_grad_x[j] += scale * grad[i] * prev_out_y[j] * reciprocal;
        prev_grad_y[j] += scale * grad[i] * prev_out_x[j] * reciprocal;
      }
    } else {
      real reciprocal_xy = 1.0f / xy;
      real reciprocal_square_sum_x = 1.0f / square_sum_x;
      real reciprocal_square_sum_y = 1.0f / square_sum_y;
      for (size_t j = 0; j < dim; ++j) {
        prev_grad_x[j] +=
            out[i] * grad[i] * (prev_out_y[j] * reciprocal_xy -
                                prev_out_x[j] * reciprocal_square_sum_x);
        prev_grad_y[j] +=
            out[i] * grad[i] * (prev_out_x[j] * reciprocal_xy -
                                prev_out_y[j] * reciprocal_square_sum_y);
      }
    }
  }
}

/**
X
xutianbing 已提交
149 150 151 152 153 154 155 156 157
 * \param inouts[0] forward input grad 1, size: nSamples * dim.
 * \param inouts[1] forward input grad 2,
 *                  size: n2 * dim (n2 == 1 or n2 == nSamples).
 *
 * \param inputs[0] backward loss output grad, size : nSamples * 1.
 * \param inputs[1] forward output value, size: nSamples * 1.
 * \param inputs[2] forward input value 1, size: nSamples * dim.
 * \param inputs[3] forward input value 2,
 *                  size: n2 * dim (n2 == 1 or n2 == nSamples).
158 159 160 161 162 163 164 165 166 167
 */
template <DeviceType Device>
class CosSimBackwardFunc : public FunctionBase {
  void init(const FuncConfig& config) override {
    scale_ = config.get<real>("scale");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
X
xutianbing 已提交
168 169 170
    CHECK_EQ(inputs.size(), 4);
    CHECK_EQ(outputs.size(), 0);
    CHECK_EQ(inouts.size(), 2);
171 172
    /// dim of out_grad and out_val == 1, column vector
    CHECK_EQ(inputs[0].dims_[1], 1UL);
X
xutianbing 已提交
173
    CHECK_EQ(inputs[1].dims_[1], 1UL);
174
    /// nSamples of out_grad == out_val == in_val1 == in_grad1
X
xutianbing 已提交
175 176 177
    CHECK_EQ(inputs[1].dims_[0], inputs[0].dims_[0]);
    CHECK_EQ(inputs[0].dims_[0], inputs[0].dims_[0]);
    CHECK_EQ(inouts[0].dims_[0], inputs[0].dims_[0]);
178
    /// dim of in1_val1 == in_val2 == in_grad1 == in_grad2
X
xutianbing 已提交
179 180 181
    CHECK_EQ(inputs[3].dims_[1], inputs[2].dims_[1]);
    CHECK_EQ(inouts[0].dims_[1], inputs[2].dims_[1]);
    CHECK_EQ(inouts[1].dims_[1], inputs[2].dims_[1]);
182

X
xutianbing 已提交
183 184
    CHECK(inputs[0].getData() && inputs[1].getData() && inputs[2].getData() &&
          inputs[3].getData() && inouts[0].getData() && inouts[1].getData());
185 186
    const auto out_grad = std::make_shared<typename MatrixT<Device>::type>(
        inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
X
xutianbing 已提交
187
    const auto out_val = std::make_shared<typename MatrixT<Device>::type>(
188
        inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);
X
xutianbing 已提交
189
    const auto in1_val = std::make_shared<typename MatrixT<Device>::type>(
190
        inputs[2].getData(), inputs[2].dims_[0], inputs[2].dims_[1]);
X
xutianbing 已提交
191
    const auto in2_val = std::make_shared<typename MatrixT<Device>::type>(
192
        inputs[3].getData(), inputs[3].dims_[0], inputs[3].dims_[1]);
X
xutianbing 已提交
193 194
    auto in1_grad = std::make_shared<typename MatrixT<Device>::type>(
        inouts[0].getData(), inouts[0].dims_[0], inouts[0].dims_[1]);
195
    auto in2_grad = std::make_shared<typename MatrixT<Device>::type>(
X
xutianbing 已提交
196
        inouts[1].getData(), inouts[1].dims_[0], inouts[1].dims_[1]);
197 198 199 200 201 202 203 204 205 206 207 208 209 210

    CosSimBackward<Device>(out_grad.get(),
                           out_val.get(),
                           in1_val.get(),
                           in2_val.get(),
                           in1_grad.get(),
                           in2_grad.get(),
                           scale_);
  }

private:
  real scale_;
};

211
REGISTER_TYPED_FUNC(CosSimForward, CPU, CosSimForwardFunc);
212
REGISTER_TYPED_FUNC(CosSimBackward, CPU, CosSimBackwardFunc);
213 214
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(CosSimForward, GPU, CosSimForwardFunc);
215
REGISTER_TYPED_FUNC(CosSimBackward, GPU, CosSimBackwardFunc);
216 217
#endif
}  // namespace paddle