cross_entropy.cu 3.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/cross_entropy.h"
16
#include "paddle/fluid/platform/cuda_device_function.h"
D
dzhwinter 已提交
17
#include "paddle/fluid/platform/cuda_primitives.h"
18 19 20 21 22

namespace paddle {
namespace operators {
namespace math {

23 24 25 26 27 28 29 30 31 32 33
namespace {

__device__ __forceinline__ float real_log(float x) { return logf(x); }

__device__ __forceinline__ double real_log(double x) { return log(x); }

__device__ __forceinline__ platform::float16 real_log(
    const platform::float16& val) {
  return static_cast<platform::float16>(logf(static_cast<float>(val)));
}

34
template <typename T>
35
__global__ void CrossEntropyKernel(T* Y, const T* X, const int64_t* label,
36 37
                                   const int N, const int D,
                                   const int ignore_index) {
38 39
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
40 41
    PADDLE_ASSERT(label[i] >= 0 && label[i] < D || label[i] == ignore_index);
    Y[i] = ignore_index == label[i]
C
chengduo 已提交
42 43
               ? static_cast<T>(0)
               : -math::TolerableValue<T>()(real_log(X[i * D + label[i]]));
44 45 46 47 48 49 50
  }
}

template <typename T>
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
                                       const int class_num) {
  int tid = threadIdx.x;
C
chengduo 已提交
51
  T val(0);
52

53 54 55
  int idx = blockIdx.x * class_num + tid;
  int end = blockIdx.x * class_num + class_num;
  for (; idx < end; idx += blockDim.x) {
C
chengduo 已提交
56
    val += math::TolerableValue<T>()(real_log(X[idx])) * label[idx];
57 58
  }

59 60 61
  val = paddle::platform::reduceSum(val, tid, blockDim.x);
  if (threadIdx.x == 0) {
    Y[blockIdx.x] = -val;
62 63
  }
}
64
}  // namespace
65 66

template <typename T>
Q
QI JUN 已提交
67
class CrossEntropyFunctor<platform::CUDADeviceContext, T> {
68
 public:
Q
QI JUN 已提交
69 70
  void operator()(const platform::CUDADeviceContext& ctx,
                  framework::Tensor* out, const framework::Tensor* prob,
71 72
                  const framework::Tensor* labels, bool softLabel,
                  const int ignore_index) {
73 74 75 76 77 78 79 80
    const T* prob_data = prob->data<T>();
    T* loss_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = prob->dims()[0];
    int class_num = prob->dims()[1];

    if (softLabel) {
      const T* label_data = labels->data<T>();
81 82 83
      int block = class_num > 512
                      ? 512
                      : pow(2, static_cast<int>(std::log2(class_num)));
84

85
      SoftCrossEntropyKernel<T><<<batch_size, block, 0, ctx.stream()>>>(
Q
qijun 已提交
86
          loss_data, prob_data, label_data, class_num);
87
    } else {
88
      const int64_t* label_data = labels->data<int64_t>();
89 90
      int block = 512;
      int grid = (batch_size + block - 1) / block;
Q
QI JUN 已提交
91
      CrossEntropyKernel<T><<<grid, block, 0, ctx.stream()>>>(
92 93
          loss_data, prob_data, label_data, batch_size, class_num,
          ignore_index);
94 95 96 97
    }
  }
};

Q
QI JUN 已提交
98 99
template class CrossEntropyFunctor<platform::CUDADeviceContext, float>;
template class CrossEntropyFunctor<platform::CUDADeviceContext, double>;
C
chengduo 已提交
100 101
template class CrossEntropyFunctor<platform::CUDADeviceContext,
                                   platform::float16>;
102 103 104
}  // namespace math
}  // namespace operators
}  // namespace paddle