CropOpGpu.cu 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "CropOp.h"
L
liaogang 已提交
16
#include "hl_base.h"
W
wanghaoshuang 已提交
17 18 19

namespace paddle {

L
liaogang 已提交
20 21 22 23 24 25 26 27 28 29 30 31
__global__ void KeCrop(real* outputs,
                       const real* inputs,
                       int inC,
                       int inH,
                       int inW,
                       int cropC,
                       int cropH,
                       int cropW,
                       int outC,
                       int outH,
                       int outW,
                       int nthreads) {
W
wanghaoshuang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < nthreads) {
    const int w = idx % outW;
    const int h = (idx / outW) % outH;
    const int c = (idx / outW / outH) % outC;
    const int n = idx / outW / outH / outC;

    const int off = ((n * inC + c + cropC) * inH + h + cropH) * inW + cropW + w;
    outputs[idx] = inputs[off];
  }
}

template <>
void Crop<DEVICE_TYPE_GPU>(real* outputs,
L
liaogang 已提交
46 47 48 49
                           const real* inputs,
                           const TensorShape inShape,
                           const TensorShape outShape,
                           const FuncConfig& conf) {
W
wanghaoshuang 已提交
50
  std::vector<uint32_t> crop_corner =
L
liaogang 已提交
51
      conf.get<std::vector<uint32_t>>("crop_corner");
52 53 54
  int cropC = crop_corner[1];
  int cropH = crop_corner[2];
  int cropW = crop_corner[3];
W
wanghaoshuang 已提交
55 56 57 58 59 60

  int num = inShape[0];
  int inC = inShape[1];
  int inH = inShape[2];
  int inW = inShape[3];

61 62 63 64
  int outC = outShape[1];
  int outH = outShape[2];
  int outW = outShape[3];

W
wanghaoshuang 已提交
65 66 67
  size_t nth = num * outC * outH * outW;
  int blockSize = 1024;
  int gridSize = (nth + blockSize - 1) / blockSize;
68

L
liaogang 已提交
69 70 71 72 73 74 75 76 77 78 79 80
  KeCrop<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>(outputs,
                                                     inputs,
                                                     inC,
                                                     inH,
                                                     inW,
                                                     cropC,
                                                     cropH,
                                                     cropW,
                                                     outC,
                                                     outH,
                                                     outW,
                                                     nth);
W
wanghaoshuang 已提交
81 82 83
  CHECK_SYNC("Crop");
}

L
liaogang 已提交
84 85 86 87 88 89 90 91 92 93 94 95
__global__ void KeCropDiff(const real* inGrad,
                           real* outGrad,
                           int inC,
                           int inH,
                           int inW,
                           int cropC,
                           int cropH,
                           int cropW,
                           int outC,
                           int outH,
                           int outW,
                           int nthreads) {
W
wanghaoshuang 已提交
96 97 98 99 100 101 102
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < nthreads) {
    const int w = idx % inW;
    const int h = (idx / inW) % inH;
    const int c = (idx / inW / inH) % inC;
    const int n = idx / inW / inH / inC;

W
wanghaoshuang 已提交
103 104
    const int off =
        ((n * outC + c + cropC) * outH + h + cropH) * outW + cropW + w;
105

W
wanghaoshuang 已提交
106 107 108 109 110 111
    outGrad[off] += inGrad[idx];
  }
}

template <>
void CropGrad<DEVICE_TYPE_GPU>(const real* inGrad,
L
liaogang 已提交
112 113 114 115
                               real* outGrad,
                               const TensorShape inShape,
                               const TensorShape outShape,
                               const FuncConfig& conf) {
W
wanghaoshuang 已提交
116
  std::vector<uint32_t> crop_corner =
L
liaogang 已提交
117
      conf.get<std::vector<uint32_t>>("crop_corner");
118 119 120
  int cropC = crop_corner[1];
  int cropH = crop_corner[2];
  int cropW = crop_corner[3];
W
wanghaoshuang 已提交
121 122 123 124 125 126

  int num = outShape[0];
  int outC = outShape[1];
  int outH = outShape[2];
  int outW = outShape[3];

127 128 129 130
  int inC = inShape[1];
  int inH = inShape[2];
  int inW = inShape[3];

W
wanghaoshuang 已提交
131 132 133 134
  size_t nth = num * inC * inH * inW;
  int blockSize = 1024;
  int gridSize = (nth + blockSize - 1) / blockSize;

L
liaogang 已提交
135 136 137 138 139 140 141 142 143 144 145 146
  KeCropDiff<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>(inGrad,
                                                         outGrad,
                                                         inC,
                                                         inH,
                                                         inW,
                                                         cropC,
                                                         cropH,
                                                         cropW,
                                                         outC,
                                                         outH,
                                                         outW,
                                                         nth);
W
wanghaoshuang 已提交
147 148 149 150
  CHECK_SYNC("CropGrad");
}

}  // namespace paddle