sum_op.cc 11.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/sum_op.h"
13

14
#include <algorithm>
M
minqiyang 已提交
15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19

Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/var_type_inference.h"
21

22 23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

26 27 28 29 30 31 32 33
namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext* ctx) const override {
35 36
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "sum");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "sum");
37 38 39

    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
40
            framework::proto::VarType::LOD_TENSOR_ARRAY) {
41 42
      return;  // skip runtime infershape when is tensor array;
    }
43

44
    auto x_var_types = ctx->GetInputsVarType("X");
45
    auto x_dims = ctx->GetInputsDim("X");
46

47 48
    auto N = x_dims.size();
    PADDLE_ENFORCE_GT(
49 50 51 52 53
        N, 0, platform::errors::InvalidArgument(
                  "The input tensor X's dimensions of SumOp "
                  "should be larger than 0. But received X's dimensions %d, "
                  "X's shape = [%s].",
                  N, &x_dims));
54
    if (N == 1) {
55
      VLOG(3) << "Warning: SumOp have only one input, may waste memory";
56
    }
Q
qiaolongfei 已提交
57

58
    framework::DDim in_dim({0});
59
    for (size_t i = 0; i < x_dims.size(); ++i) {
60 61 62 63
      auto& x_dim = x_dims[i];
      // x_dim.size() == 1 means the real dim of selected rows is [0]
      if (x_var_types[i] == framework::proto::VarType::SELECTED_ROWS &&
          x_dim.size() == 1) {
64 65
        continue;
      }
66 67 68 69 70 71
      if (framework::product(x_dim) == 0) {
        continue;
      }
      if (framework::product(in_dim) == 0) {
        in_dim = x_dim;
      } else {
Z
zhaoyuchen 已提交
72
        if (ctx->IsRuntime()) {
73 74 75 76 77 78
          PADDLE_ENFORCE_EQ(in_dim, x_dim,
                            platform::errors::InvalidArgument(
                                "The input tensor X of SumOp must"
                                " have same shape. But received X[0]'s shape = "
                                "[%s], X[%d]'s shape = [%s].",
                                in_dim, i, x_dim));
Z
zhaoyuchen 已提交
79
        } else {
80 81
          PADDLE_ENFORCE_EQ(
              in_dim.size(), x_dim.size(),
82 83 84 85 86 87
              platform::errors::InvalidArgument(
                  "The input tensor X of SumOp must have same "
                  "dimensions. But received X[0]'s dimensions = %d, X[0]'s "
                  "shape = "
                  "[%s], X[%d]'s dimensions = %d, X[%d]'s shape = [%s].",
                  in_dim.size(), in_dim, i, x_dim.size(), i, x_dim));
Z
zhaoyuchen 已提交
88
          // if in_dim or x_dim has -1, not check equal
89 90
          for (int j = 0; j < x_dim.size(); ++j) {
            if (x_dim[j] == -1 || in_dim[j] == -1) {
Z
zhaoyuchen 已提交
91 92
              continue;
            }
93 94
            PADDLE_ENFORCE_EQ(
                in_dim[j], x_dim[j],
95 96 97 98 99
                platform::errors::InvalidArgument(
                    "The input tensor X of SumOp must have same shape "
                    "if not -1."
                    "But received X[0]'s shape = [%s], X[%d]'s shape = [%s].",
                    in_dim, i, x_dim));
Z
zhaoyuchen 已提交
100 101
          }
        }
102
      }
Q
qijun 已提交
103
    }
Q
Qiao Longfei 已提交
104 105
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
106
  }
107 108

 protected:
109
  framework::OpKernelType GetExpectedKernelType(
110 111
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
H
hong 已提交
112
    auto x_vars_name = ctx.InputNames("X");
113 114 115 116

    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

117
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
118
      int dtype = -1;
C
chengduo 已提交
119
      for (size_t idx = 0; idx < x_vars.size(); ++idx) {
120 121 122 123
        PADDLE_ENFORCE_NOT_NULL(
            x_vars[idx],
            platform::errors::NotFound("Input var[%s] should not be nullptr",
                                       x_vars_name[idx]));
C
chengduo 已提交
124 125
        auto tensor =
            framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
126
        if (tensor->numel() <= 0 || (!tensor->IsInitialized())) {
127 128 129
          continue;
        }
        if (dtype == -1) {
Y
Yu Yang 已提交
130
          dtype = tensor->type();
131
        } else {
132 133 134
          PADDLE_ENFORCE_EQ(dtype, tensor->type(),
                            platform::errors::InvalidArgument(
                                "The inputs type of sum op must be same"));
135 136 137
        }
      }
      PADDLE_ENFORCE_NE(dtype, -1,
138 139
                        platform::errors::InvalidArgument(
                            "Sum operator should have at least one tensor"));
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#ifdef PADDLE_WITH_MKLDNN
      if (library == framework::LibraryType::kPlain &&
          platform::CanMKLDNNBeUsed(ctx) &&
          static_cast<framework::proto::VarType::Type>(dtype) ==
              framework::proto::VarType::FP32 &&
          ctx.OutputVar("Out")->IsType<framework::LoDTensor>()) {
        if (std::all_of(x_vars.begin(), x_vars.end(),
                        [](const framework::Variable* v) {
                          return v->IsType<framework::LoDTensor>();
                        })) {
          return framework::OpKernelType(
              framework::proto::VarType::FP32, ctx.GetPlace(),
              framework::DataLayout::kMKLDNN, framework::LibraryType::kMKLDNN);
        }
      }
#endif

158
      return framework::OpKernelType(
159 160
          static_cast<framework::proto::VarType::Type>(dtype), ctx.GetPlace(),
          layout, library);
161
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
162 163 164
      for (auto& var : x_vars) {
        auto& value = var->Get<framework::SelectedRows>().value();
        if (value.IsInitialized()) {
Y
Yu Yang 已提交
165 166
          return framework::OpKernelType(value.type(), ctx.device_context(),
                                         layout, library);
167 168 169 170
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
171
                                     ctx.device_context(), layout, library);
172
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
173 174 175
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
176
          if (each.numel() != 0 && each.IsInitialized()) {
Y
Yu Yang 已提交
177 178
            return framework::OpKernelType(each.type(), ctx.device_context(),
                                           layout, library);
Y
Yang Yang(Tony) 已提交
179
          }
180 181
        }
      }
Y
Yang Yang(Tony) 已提交
182
      PADDLE_THROW("Cannot find the input data type by all input data");
183 184
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
S
sneaxiy 已提交
185
                 framework::ToTypeName(x_vars[0]->Type()));
186
  }
187 188 189 190
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
191
  void Make() override {
192 193 194 195 196
    AddInput("X",
             "A Varaible list. The shape and data type of the list elements"
             "should be consistent. Variable can be multi-dimensional Tensor"
             "or LoDTensor, and data types can be: float32, float64, int32, "
             "int64.")
197
        .AsDuplicable();
198 199 200
    AddOutput("Out",
              "the sum of input :code:`x`. its shape and data types are "
              "consistent with :code:`x`.");
201 202 203
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
204 205 206
    AddComment(R"DOC(This OP is used to sum one or more Tensor or LoDTensor
                    of the input. If the input is LoDTensor, the output only
                    shares LoD information with the first input.)DOC");
207 208 209
  }
};

Q
QI JUN 已提交
210 211
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
212 213
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto& inputs = ctx->Input("X");
214
    auto var_type = framework::proto::VarType::SELECTED_ROWS;
M
minqiyang 已提交
215 216
    for (auto& name : ctx->Input("X")) {
      VLOG(10) << name << " " << ctx->GetType(name);
Y
Yang Yang(Tony) 已提交
217 218
    }

Q
QI JUN 已提交
219
    bool any_input_is_lod_tensor = std::any_of(
M
minqiyang 已提交
220 221
        inputs.begin(), inputs.end(), [ctx](const std::string& name) {
          return ctx->GetType(name) == framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
222
        });
223

M
minqiyang 已提交
224 225
    auto is_tensor_array = [ctx](const std::string& name) {
      return ctx->GetType(name) == framework::proto::VarType::LOD_TENSOR_ARRAY;
226 227 228 229 230 231 232 233
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
Y
Yang Yang(Tony) 已提交
234 235 236
      if (!all_inputs_are_tensor_array) {
        std::ostringstream os;
        for (auto& each : inputs) {
M
minqiyang 已提交
237
          os << "    " << each << " type is " << ctx->GetType(each) << "\n";
Y
Yang Yang(Tony) 已提交
238
        }
239 240
        PADDLE_ENFORCE_EQ(all_inputs_are_tensor_array, true,
                          "Not all inputs are tensor array:\n%s", os.str());
Y
Yang Yang(Tony) 已提交
241
      }
242
      var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
243
    } else if (any_input_is_lod_tensor) {
244
      var_type = framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
245 246
    }

M
minqiyang 已提交
247 248 249
    auto out_var_name = ctx->Output("Out").front();
    ctx->SetType(out_var_name, var_type);
    ctx->SetDataType(out_var_name, ctx->GetDataType(inputs.front()));
Q
QI JUN 已提交
250 251 252
  }
};

H
hong 已提交
253
class SumGradDescMaker : public framework::GradOpDescMakerBase {
254
 public:
255
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
256

Y
Yu Yang 已提交
257
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
258
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
259
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
260 261 262 263
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
264
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
265 266 267 268
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
269
                     return std::unique_ptr<framework::OpDesc>(grad_op);
270
                   });
H
hong 已提交
271 272 273 274 275 276 277 278 279

    return grad_ops;
  }
};

class SumGradOpBaseMaker : public imperative::GradOpBaseMakerBase {
 public:
  using imperative::GradOpBaseMakerBase::GradOpBaseMakerBase;

280
  std::shared_ptr<imperative::GradOpNode> operator()() const override {
H
hong 已提交
281
    auto x_grads = InputGrad("X", false);
282 283
    using InputGradsType = decltype(x_grads);

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    if (!x_grads.empty()) {
      auto node = this->NewGradNode();
      node->reserve(x_grads.size());
      auto og = OutputGrad("Out");
      for (auto& x_grad : x_grads) {
        imperative::TracedGradOp op(node);
        op.SetType("scale");
        op.SetInput("X", og);
        op.SetOutput("Out", InputGradsType{x_grad});
        op.SetAttr("scale", 1.0f);
      }
      return node;
    } else {
      return nullptr;
    }
299 300 301
  }
};

302
DECLARE_INPLACE_OP_INFERER(SumInplace, {"X", "Out"});
303

304 305 306 307
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
308

H
hong 已提交
309 310 311
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradDescMaker,
                  ops::SumGradOpBaseMaker, ops::SumOpVarTypeInference,
                  ops::SumInplace);
312

Q
QI JUN 已提交
313 314 315 316 317
REGISTER_OP_CPU_KERNEL(
    sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);