deformable_conv_kernel.cu 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/deformable_conv_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/impl/deformable_conv_kernel_impl.h"

namespace phi {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaximumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaximumNumBlocks);
}

template <typename T>
__global__ void ModulatedDeformableIm2colGpuKernel(
    const int nthreads,
    const T* data_im,
    const T* data_offset,
    const T* data_mask,
    const int height,
    const int width,
    const int kernel_h,
    const int kernel_w,
    const int pad_h,
    const int pad_w,
    const int stride_h,
    const int stride_w,
    const int dilation_h,
    const int dilation_w,
    const int channel_per_deformable_group,
    const int batch_size,
    const int num_channels,
    const int deformable_group,
    const int height_col,
    const int width_col,
    T* data_col) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    const int w_col = i % width_col;
    const int h_col = (i / width_col) % height_col;
    const int b_col = (i / width_col) / height_col % batch_size;
    const int c_im = (i / width_col / height_col) / batch_size;
    const int c_col = c_im * kernel_h * kernel_w;

    const int deformable_group_index = c_im / channel_per_deformable_group;

    const int h_in = h_col * stride_h - pad_h;
    const int w_in = w_col * stride_w - pad_w;

    T* data_col_ptr =
        data_col +
        ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
    const T* data_im_ptr =
        data_im + (b_col * num_channels + c_im) * height * width;
    const T* data_offset_ptr =
        data_offset +
        (b_col * deformable_group + deformable_group_index) * 2 * kernel_h *
            kernel_w * height_col * width_col;
    const T* data_mask_ptr =
        data_mask +
        (b_col * deformable_group + deformable_group_index) * kernel_h *
            kernel_w * height_col * width_col;

    for (int i = 0; i < kernel_h; ++i) {
      for (int j = 0; j < kernel_w; ++j) {
        const int data_offset_h_ptr =
            ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
        const int data_offset_w_ptr =
            ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
            w_col;
        const int data_mask_hw_ptr =
            ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;

        const T offset_h = data_offset_ptr[data_offset_h_ptr];
        const T offset_w = data_offset_ptr[data_offset_w_ptr];
        const T mask = data_mask_ptr[data_mask_hw_ptr];
        T val = static_cast<T>(0);
        const T h_im = h_in + i * dilation_h + offset_h;
        const T w_im = w_in + j * dilation_w + offset_w;
        if (h_im > -1 && w_im > -1 && h_im < height && w_im < width) {
          val =
              DmcnIm2colBilinear(data_im_ptr, width, height, width, h_im, w_im);
        }
        *data_col_ptr = val * mask;
        data_col_ptr += batch_size * height_col * width_col;
      }
    }
  }
}

template <typename T, typename Context>
void ModulatedDeformableIm2col(const Context& dev_ctx,
                               const T* data_im,
                               const T* data_offset,
                               const T* data_mask,
                               const std::vector<int64_t>& im_shape,
                               const std::vector<int64_t>& col_shape,
                               const std::vector<int64_t>& filter_shape,
                               const std::vector<int>& paddings,
                               const std::vector<int>& strides,
                               const std::vector<int>& dilations,
                               const int deformable_groups,
                               T* data_col) {
  int channel_per_deformable_group = im_shape[0] / deformable_groups;
  int num_kernels = im_shape[0] * col_shape[1] * col_shape[2] * col_shape[3];

  int blocks = NumBlocks(num_kernels);
  int threads = kNumCUDAThreads;

  ModulatedDeformableIm2colGpuKernel<
      T><<<blocks, threads, 0, dev_ctx.stream()>>>(num_kernels,
                                                   data_im,
                                                   data_offset,
                                                   data_mask,
                                                   im_shape[1],
                                                   im_shape[2],
                                                   filter_shape[2],
                                                   filter_shape[3],
                                                   paddings[0],
                                                   paddings[1],
                                                   strides[0],
                                                   strides[1],
                                                   dilations[0],
                                                   dilations[1],
                                                   channel_per_deformable_group,
                                                   col_shape[1],
                                                   im_shape[0],
                                                   deformable_groups,
                                                   col_shape[2],
                                                   col_shape[3],
                                                   data_col);
}

}  // namespace phi

PD_REGISTER_KERNEL(deformable_conv,
                   GPU,
                   ALL_LAYOUT,
                   phi::DeformableConvKernel,
                   float,
                   double) {}