lookup_table_op.cu 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/operators/functor/math_functor.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int blockDimX, int blockDimY, int gridDimX>
D
dangqingqing 已提交
26
__global__ void LookupTable(T* output, const T* table, const int32_t* ids,
27 28 29 30 31 32 33 34
                            const int N, const int K, const int D) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * gridDimX;

  while (idy < K) {
    int id = ids[idy];
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
35 36
    T* out = output + idy * D;
    const T* tab = table + id * D;
37 38 39 40 41 42 43 44
    for (int i = idx; i < D; i += blockDimX) {
      out[i] = tab[i];
    }
    idy += blockDimY * gridDimX;
  }
}

template <typename T, int blockDimX, int blockDimY, int gridDimX>
D
dangqingqing 已提交
45 46
__global__ void LookupTableGrad(T* table, const T* output, const int32_t* ids,
                                const int N, const int K, const int D) {
47 48 49 50 51 52 53
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * gridDimX;

  while (idy < K) {
    int id = ids[idy];
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
54 55
    const T* out = output + idy * D;
    T* tab = table + id * D;
56
    for (int i = idx; i < D; i += blockDimX) {
D
dangqingqing 已提交
57
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    }
    idy += blockDimY * gridDimX;
  }
}

template <typename T>
class LookupTableCUDAKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto table_t = context.Input<Tensor>("W");
    auto ids_t = context.Input<Tensor>("Ids");
    auto output_t = context.Output<Tensor>("Out");

    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
    size_t K = product(ids_t->dims());
D
dangqingqing 已提交
74
    auto ids = ids_t->data<int32_t>();
75 76 77 78 79 80 81 82 83 84
    auto table = table_t->data<T>();
    auto output = output_t->mutable_data<T>(context.GetPlace());

    dim3 threads(128, 8);
    dim3 grids(8, 1);
    LookupTable<T, 128, 8, 8><<<grids, threads>>>(output, table, ids, N, K, D);
  }
};

template <typename T>
D
dangqingqing 已提交
85
class LookupTableGradCUDAKernel : public framework::OpKernel {
86 87 88 89 90 91 92 93 94
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto ids_t = context.Input<Tensor>("Ids");
    auto d_output_t = context.Input<Tensor>(framework::GradVarName("Out"));
    auto d_table_t = context.Output<Tensor>(framework::GradVarName("W"));

    int N = d_table_t->dims()[0];
    int D = d_table_t->dims()[1];
    int K = product(ids_t->dims());
D
dangqingqing 已提交
95
    const int32_t* ids = ids_t->data<int32_t>();
96
    const T* d_output = d_output_t->data<T>();
D
dangqingqing 已提交
97
    T* d_table = d_table_t->mutable_data<T>(context.GetPlace());
98 99 100 101 102 103 104

    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);
    functor::Set<paddle::platform::GPUPlace, T>()(static_cast<T>(0), d_table_t,
                                                  device_context);
    dim3 threads(128, 8);
    dim3 grids(8, 1);
D
dangqingqing 已提交
105 106
    LookupTableGrad<T, 128, 8, 8><<<grids, threads>>>(d_table, d_output, ids, N,
                                                      K, D);
107 108 109 110 111 112 113 114
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>);
D
dangqingqing 已提交
115 116
REGISTER_OP_GPU_KERNEL(lookup_table_grad,
                       ops::LookupTableGradCUDAKernel<float>);