math_function_test.cu 14.2 KB
Newer Older
1
//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Q
qijun 已提交
14
#include "gtest/gtest.h"
Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/math_function.h"
Q
qijun 已提交
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
void fill_fp16_data(paddle::platform::float16* in_ptr, size_t size,
                    const std::vector<float>& data) {
  PADDLE_ENFORCE_EQ(size, data.size());
  for (size_t i = 0; i < data.size(); ++i) {
    in_ptr[i] = paddle::platform::float16(data[i]);
  }
}

TEST(math_function, notrans_mul_trans_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
40 41 42
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

43 44
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);
Q
qijun 已提交
45

46
  out_gpu.mutable_data<float>({2, 2}, gpu_place);
Q
qijun 已提交
47

48
  paddle::operators::math::matmul<CUDADeviceContext, float>(
Q
qijun 已提交
49 50
      context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);

51
  TensorCopy(out_gpu, cpu_place, context, &out);
Q
qijun 已提交
52 53 54 55 56 57 58 59 60

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 5);
  EXPECT_EQ(out_ptr[1], 14);
  EXPECT_EQ(out_ptr[2], 14);
  EXPECT_EQ(out_ptr[3], 50);
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
TEST(math_function, notrans_mul_trans_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);

  out_gpu.mutable_data<float16>({2, 2}, gpu_place);

  paddle::operators::math::matmul<CUDADeviceContext, float16>(
      context, input1_gpu, false, input2_gpu, true, float16(1), &out_gpu,
      float16(0));

  TensorCopy(out_gpu, cpu_place, context, &out);

  float16* out_ptr = out.data<float16>();
  context.Wait();
  EXPECT_EQ(static_cast<float>(out_ptr[0]), 5);
  EXPECT_EQ(static_cast<float>(out_ptr[1]), 14);
  EXPECT_EQ(static_cast<float>(out_ptr[2]), 14);
  EXPECT_EQ(static_cast<float>(out_ptr[3]), 50);
}

TEST(math_function, trans_mul_notrans_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);
Q
qijun 已提交
110

111
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
112 113 114
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

115 116
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);
Q
qijun 已提交
117

118
  out_gpu.mutable_data<float>({3, 3}, gpu_place);
Q
qijun 已提交
119

Q
QI JUN 已提交
120
  paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
121 122
      context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);

123
  TensorCopy(out_gpu, cpu_place, context, &out);
Q
qijun 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 9);
  EXPECT_EQ(out_ptr[1], 12);
  EXPECT_EQ(out_ptr[2], 15);
  EXPECT_EQ(out_ptr[3], 12);
  EXPECT_EQ(out_ptr[4], 17);
  EXPECT_EQ(out_ptr[5], 22);
  EXPECT_EQ(out_ptr[6], 15);
  EXPECT_EQ(out_ptr[7], 22);
  EXPECT_EQ(out_ptr[8], 29);
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
TEST(math_function, trans_mul_notrans_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);

  out_gpu.mutable_data<float16>({3, 3}, gpu_place);

  paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float16>(
      context, input1_gpu, true, input2_gpu, false, float16(1), &out_gpu,
      float16(0));

  TensorCopy(out_gpu, cpu_place, context, &out);

  float16* out_ptr = out.data<float16>();
  context.Wait();
  EXPECT_EQ(static_cast<float>(out_ptr[0]), 9);
  EXPECT_EQ(static_cast<float>(out_ptr[1]), 12);
  EXPECT_EQ(static_cast<float>(out_ptr[2]), 15);
  EXPECT_EQ(static_cast<float>(out_ptr[3]), 12);
  EXPECT_EQ(static_cast<float>(out_ptr[4]), 17);
  EXPECT_EQ(static_cast<float>(out_ptr[5]), 22);
  EXPECT_EQ(static_cast<float>(out_ptr[6]), 15);
  EXPECT_EQ(static_cast<float>(out_ptr[7]), 22);
  EXPECT_EQ(static_cast<float>(out_ptr[8]), 29);
}

TEST(math_function, gemm_notrans_cublas_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);
Q
qijun 已提交
193 194 195 196

  int m = 2;
  int n = 3;
  int k = 3;
197
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
198 199
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
200
  float* input2_ptr = input2.mutable_data<float>({3, 4}, cpu_place);
Q
qijun 已提交
201 202
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
203
  float* input3_ptr = input3.mutable_data<float>({2, 4}, cpu_place);
Q
qijun 已提交
204 205 206
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

207 208 209
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
Q
qijun 已提交
210 211
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
212
  float* c = input3_gpu.mutable_data<float>(gpu_place);
Q
qijun 已提交
213

Q
QI JUN 已提交
214
  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
215 216
      context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);

217
  TensorCopy(input3_gpu, cpu_place, context, &input3);
Q
qijun 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
TEST(math_function, gemm_notrans_cublas_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  int m = 2;
  int n = 3;
  int k = 3;
  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
  float16* input2_ptr = input2.mutable_data<float16>({3, 4}, cpu_place);
  fill_fp16_data(input2_ptr, input2.numel(),
                 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11});
  float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place);
  fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
  float16* a = input1_gpu.data<float16>();
  float16* b = input2_gpu.data<float16>();
  float16* c = input3_gpu.mutable_data<float16>(gpu_place);

  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float16>(
      context, false, false, m, n, k, float16(1), a, 3, b + 1, 4, float16(1),
      c + 1, 4);

  TensorCopy(input3_gpu, cpu_place, context, &input3);

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0);
  EXPECT_EQ(static_cast<float>(input3_ptr[1]), 24);
  EXPECT_EQ(static_cast<float>(input3_ptr[2]), 28);
  EXPECT_EQ(static_cast<float>(input3_ptr[3]), 32);
  EXPECT_EQ(static_cast<float>(input3_ptr[4]), 4);
  EXPECT_EQ(static_cast<float>(input3_ptr[5]), 73);
  EXPECT_EQ(static_cast<float>(input3_ptr[6]), 86);
  EXPECT_EQ(static_cast<float>(input3_ptr[7]), 99);
}

TEST(math_function, gemm_trans_cublas_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);
Q
qijun 已提交
306 307 308 309

  int m = 2;
  int n = 3;
  int k = 3;
310
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
311 312
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
313
  float* input2_ptr = input2.mutable_data<float>({4, 3}, cpu_place);
Q
qijun 已提交
314 315
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
316
  float* input3_ptr = input3.mutable_data<float>({2, 4}, cpu_place);
Q
qijun 已提交
317 318 319
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

320 321 322
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
Q
qijun 已提交
323 324
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
325
  float* c = input3_gpu.mutable_data<float>(gpu_place);
Q
qijun 已提交
326

Q
QI JUN 已提交
327
  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
328 329
      context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);

330
  TensorCopy(input3_gpu, cpu_place, context, &input3);
Q
qijun 已提交
331

332
  context.Wait();
Q
qijun 已提交
333 334 335 336 337 338 339 340
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
}

TEST(math_function, gemm_trans_cublas_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  int m = 2;
  int n = 3;
  int k = 3;
  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
  float16* input2_ptr = input2.mutable_data<float16>({4, 3}, cpu_place);
  fill_fp16_data(input2_ptr, input2.numel(),
                 {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11});
  float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place);
  fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
  float16* a = input1_gpu.data<float16>();
  float16* b = input2_gpu.data<float16>();
  float16* c = input3_gpu.mutable_data<float16>(gpu_place);

  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float16>(
      context, false, true, m, n, k, float16(1), a, 3, b + 3, 3, float16(1),
      c + 1, 4);

  TensorCopy(input3_gpu, cpu_place, context, &input3);

  context.Wait();
  EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0);
  EXPECT_EQ(static_cast<float>(input3_ptr[1]), 24);
  EXPECT_EQ(static_cast<float>(input3_ptr[2]), 28);
  EXPECT_EQ(static_cast<float>(input3_ptr[3]), 32);
  EXPECT_EQ(static_cast<float>(input3_ptr[4]), 4);
  EXPECT_EQ(static_cast<float>(input3_ptr[5]), 73);
  EXPECT_EQ(static_cast<float>(input3_ptr[6]), 86);
  EXPECT_EQ(static_cast<float>(input3_ptr[7]), 99);
Q
qijun 已提交
391
}
392 393 394

template <typename T>
void GemvTest(int m, int n, bool trans) {
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor mat_a;
  Tensor vec_b;
  Tensor vec_c;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  T* data_a = mat_a.mutable_data<T>({m, n}, cpu_place);
  T* data_b = vec_b.mutable_data<T>({trans ? m : n}, cpu_place);
  T* data_c = vec_c.mutable_data<T>({trans ? n : m}, cpu_place);

  Tensor g_mat_a;
  Tensor g_vec_b;
  Tensor g_vec_c;
  T* g_data_a = g_mat_a.mutable_data<T>(mat_a.dims(), gpu_place);
  T* g_data_b = g_vec_b.mutable_data<T>(vec_b.dims(), gpu_place);
  T* g_data_c = g_vec_c.mutable_data<T>(vec_c.dims(), gpu_place);
416 417 418 419 420 421 422 423

  for (int i = 0; i < mat_a.numel(); ++i) {
    data_a[i] = static_cast<T>(i);
  }
  for (int i = 0; i < vec_b.numel(); ++i) {
    data_b[i] = static_cast<T>(i);
  }

424 425
  TensorCopy(mat_a, gpu_place, context, &g_mat_a);
  TensorCopy(vec_b, gpu_place, context, &g_vec_b);
426

427
  paddle::operators::math::gemv<CUDADeviceContext, T>(
428 429 430
      context, trans, static_cast<int>(m), static_cast<int>(n), 1., g_data_a,
      g_data_b, 0., g_data_c);

431
  TensorCopy(g_vec_c, cpu_place, context, &vec_c);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

  if (!trans) {
    for (int i = 0; i < m; ++i) {
      T sum = 0.0;
      for (int j = 0; j < n; ++j) {
        sum += data_a[i * n + j] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      T sum = 0.0;
      for (int j = 0; j < m; ++j) {
        sum += data_a[j * n + i] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  }
}

TEST(math_function, gemv) {
  GemvTest<float>(3, 13, false);
  GemvTest<double>(3, 13, false);
  GemvTest<float>(3, 13, true);
  GemvTest<double>(3, 13, true);
}