op_kernel_info.h 33.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <iostream>
#include <string>
#include <typeindex>
#include <typeinfo>
#include <unordered_map>
#include <vector>

#include "paddle/pten/api/ext/dll_decl.h"
#include "paddle/pten/api/ext/exception.h"
#include "paddle/pten/api/ext/op_meta_info.h"
#include "paddle/pten/api/include/tensor.h"
#include "paddle/pten/common/scalar.h"
#include "paddle/pten/common/scalar_array.h"
#include "paddle/utils/any.h"
#include "paddle/utils/small_vector.h"

/**
 * Custom Kernel Info Define.
 *
 * Used to maintain custom kernel core information before registering.
 * Pten is working on exposing headers, custom kernel depends on them, and
 * we prefer outer users following pten-kernel-function-style and registering
 * macro. So, we have to re-implement some structs or class and functions to
 * make sure users' custom kernel functions can be registered to pten.
 *
 * TODO(Aganlengzi): We should upgrade following pten.
 */

namespace paddle {
namespace framework {
class PADDLE_API OpKernelInfoHelper;
}  // namespace framework

// TODO(Aganlengzi): Simple DeviceContext temporarily for stream getting
// before pten::DeviceContext is exposed.
class DeviceContext {
 public:
  DeviceContext() { stream_ = nullptr; }
  void set_stream(void* stream) { stream_ = stream; }
  void* stream() const { return stream_; }

 private:
  void* stream_;
};
class CPUContext : public DeviceContext {};

// TODO(Aganlengzi): Use paddle::Tensor before DenseTensor is exposed
using Tensor = paddle::experimental::Tensor;
using Scalar = pten::Scalar;
using ScalarArray = pten::ScalarArray;

// Record custom kernel core information
// We can not use pten::KernelFn directly, so users' custom kernel function
// is signatured to `CustomKernelFunc', notice that the first parameter is
// fixed to `const DeviceContext&'.
using CustomKernelFunc =
    void (*)(const DeviceContext& dev_ctx,
             const std::vector<Tensor>& inputs,
             const std::vector<std::vector<Tensor>>& vec_inputs,
             const std::vector<paddle::any>& attrs,
             std::vector<Tensor*>* outputs,
             std::vector<std::vector<Tensor*>>* vec_outputs);

////////////////////// Kernel Function (PD_PT_KERNEL) ////////////////////////
#define PD_SPECIALIZE_KernelCallHelper_FOR_DEV_CONTEXT(device_ctx)           \
  template <typename... Tail>                                                \
  struct CustomComputeCallHelper<const device_ctx&, Tail...> {               \
    template <int dev_ctx_idx,                                               \
              int in_idx,                                                    \
              int vec_in_idx,                                                \
              int attr_idx,                                                  \
              int out_idx,                                                   \
              int vec_out_idx,                                               \
              typename... PreviousArgs>                                      \
    static void Compute(const DeviceContext& dev_ctx,                        \
                        const std::vector<Tensor>& inputs,                   \
                        const std::vector<std::vector<Tensor>>& vec_inputs,  \
                        const std::vector<paddle::any>& attrs,               \
                        std::vector<Tensor*>* outputs,                       \
                        std::vector<std::vector<Tensor*>>* vec_outputs,      \
                        PreviousArgs... pargs) {                             \
      static_assert(in_idx == 0,                                             \
                    "Kernel's DeviceContext should appear before Inputs.");  \
      static_assert(vec_in_idx == 0,                                         \
                    "Kernel's DeviceContext should appear before Inputs.");  \
      static_assert(                                                         \
          attr_idx == 0,                                                     \
          "Kernel's DeviceContext should appear before Attributes.");        \
      static_assert(out_idx == 0,                                            \
                    "Kernel's DeviceContext should appear before Outputs."); \
      static_assert(vec_out_idx == 0,                                        \
                    "Kernel's DeviceContext should appear before Outputs."); \
      const device_ctx& arg = static_cast<const device_ctx&>(dev_ctx);       \
      CustomComputeCallHelper<Tail...>::template Compute<dev_ctx_idx + 1,    \
                                                         in_idx,             \
                                                         vec_in_idx,         \
                                                         attr_idx,           \
                                                         out_idx,            \
                                                         vec_out_idx>(       \
          dev_ctx,                                                           \
          inputs,                                                            \
          vec_inputs,                                                        \
          attrs,                                                             \
          outputs,                                                           \
          vec_outputs,                                                       \
          pargs...,                                                          \
          arg);                                                              \
    }                                                                        \
  }

#define PD_SPECIALIZE_KernelCallHelper_FOR_INPUT(tensor_type)               \
  template <typename... Tail>                                               \
  struct CustomComputeCallHelper<const tensor_type&, Tail...> {             \
    template <int dev_ctx_idx,                                              \
              int in_idx,                                                   \
              int vec_in_idx,                                               \
              int attr_idx,                                                 \
              int out_idx,                                                  \
              int vec_out_idx,                                              \
              typename... PreviousArgs>                                     \
    static void Compute(const DeviceContext& dev_ctx,                       \
                        const std::vector<Tensor>& inputs,                  \
                        const std::vector<std::vector<Tensor>>& vec_inputs, \
                        const std::vector<paddle::any>& attrs,              \
                        std::vector<Tensor*>* outputs,                      \
                        std::vector<std::vector<Tensor*>>* vec_outputs,     \
                        PreviousArgs... pargs) {                            \
      static_assert(attr_idx == 0,                                          \
                    "Kernel's Input should appear before Attributes.");     \
      static_assert(out_idx == 0,                                           \
                    "Kernel's Input should appear before Outputs.");        \
      static_assert(vec_out_idx == 0,                                       \
                    "Kernel's Input should appear before Outputs.");        \
      const Tensor& arg = inputs[in_idx];                                   \
      CustomComputeCallHelper<Tail...>::template Compute<dev_ctx_idx,       \
                                                         in_idx + 1,        \
                                                         vec_in_idx,        \
                                                         attr_idx,          \
                                                         out_idx,           \
                                                         vec_out_idx>(      \
          dev_ctx,                                                          \
          inputs,                                                           \
          vec_inputs,                                                       \
          attrs,                                                            \
          outputs,                                                          \
          vec_outputs,                                                      \
          pargs...,                                                         \
          arg);                                                             \
    }                                                                       \
  }

#define PD_SPECIALIZE_KernelCallHelper_FOR_MULTI_INPUT(tensor_type)          \
  template <typename... Tail>                                                \
  struct CustomComputeCallHelper<const std::vector<tensor_type>&, Tail...> { \
    template <int dev_ctx_idx,                                               \
              int in_idx,                                                    \
              int vec_in_idx,                                                \
              int attr_idx,                                                  \
              int out_idx,                                                   \
              int vec_out_idx,                                               \
              typename... PreviousArgs>                                      \
    static void Compute(const DeviceContext& dev_ctx,                        \
                        const std::vector<Tensor>& inputs,                   \
                        const std::vector<std::vector<Tensor>>& vec_inputs,  \
                        const std::vector<paddle::any>& attrs,               \
                        std::vector<Tensor*>* outputs,                       \
                        std::vector<std::vector<Tensor*>>* vec_outputs,      \
                        PreviousArgs... pargs) {                             \
      static_assert(attr_idx == 0,                                           \
                    "Kernel's Input should appear before Attributes.");      \
      static_assert(out_idx == 0,                                            \
                    "Kernel's Input should appear before Outputs.");         \
      static_assert(vec_out_idx == 0,                                        \
                    "Kernel's Input should appear before Outputs.");         \
      const std::vector<Tensor>& arg = vec_inputs[vec_in_idx];               \
      CustomComputeCallHelper<Tail...>::template Compute<dev_ctx_idx,        \
                                                         in_idx,             \
                                                         vec_in_idx + 1,     \
                                                         attr_idx,           \
                                                         out_idx,            \
                                                         vec_out_idx>(       \
          dev_ctx,                                                           \
          inputs,                                                            \
          vec_inputs,                                                        \
          attrs,                                                             \
          outputs,                                                           \
          vec_outputs,                                                       \
          pargs...,                                                          \
          arg);                                                              \
    }                                                                        \
  }

#define PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(attr_type)             \
  template <typename... Tail>                                               \
  struct CustomComputeCallHelper<attr_type, Tail...> {                      \
    template <int dev_ctx_idx,                                              \
              int in_idx,                                                   \
              int vec_in_idx,                                               \
              int attr_idx,                                                 \
              int out_idx,                                                  \
              int vec_out_idx,                                              \
              typename... PreviousArgs>                                     \
    static void Compute(const DeviceContext& dev_ctx,                       \
                        const std::vector<Tensor>& inputs,                  \
                        const std::vector<std::vector<Tensor>>& vec_inputs, \
                        const std::vector<paddle::any>& attrs,              \
                        std::vector<Tensor*>* outputs,                      \
                        std::vector<std::vector<Tensor*>>* vec_outputs,     \
                        PreviousArgs... pargs) {                            \
      static_assert(out_idx == 0,                                           \
                    "Kernel's Attributes should appear before Outputs.");   \
      static_assert(vec_out_idx == 0,                                       \
                    "Kernel's Attributes should appear before Outputs.");   \
      try {                                                                 \
        attr_type arg = paddle::any_cast<attr_type>(attrs[attr_idx]);       \
        return CustomComputeCallHelper<Tail...>::template Compute<          \
            dev_ctx_idx,                                                    \
            in_idx,                                                         \
            vec_in_idx,                                                     \
            attr_idx + 1,                                                   \
            out_idx,                                                        \
            vec_out_idx>(dev_ctx,                                           \
                         inputs,                                            \
                         vec_inputs,                                        \
                         attrs,                                             \
                         outputs,                                           \
                         vec_outputs,                                       \
                         pargs...,                                          \
                         arg);                                              \
      } catch (paddle::bad_any_cast&) {                                     \
        PD_THROW(                                                           \
            "Attribute cast error in custom operator. Expected " #attr_type \
            " value.");                                                     \
      }                                                                     \
    }                                                                       \
  }

#define PD_SPECIALIZE_KernelCallHelper_FOR_OUTPUT(tensor_type)              \
  template <typename... Tail>                                               \
  struct CustomComputeCallHelper<tensor_type*, Tail...> {                   \
    template <int dev_ctx_idx,                                              \
              int in_idx,                                                   \
              int vec_in_idx,                                               \
              int attr_idx,                                                 \
              int out_idx,                                                  \
              int vec_out_idx,                                              \
              typename... PreviousArgs>                                     \
    static void Compute(const DeviceContext& dev_ctx,                       \
                        const std::vector<Tensor>& inputs,                  \
                        const std::vector<std::vector<Tensor>>& vec_inputs, \
                        const std::vector<paddle::any>& attrs,              \
                        std::vector<Tensor*>* outputs,                      \
                        std::vector<std::vector<Tensor*>>* vec_outputs,     \
                        PreviousArgs... pargs) {                            \
      tensor_type* arg = (*outputs)[out_idx];                               \
      CustomComputeCallHelper<Tail...>::template Compute<dev_ctx_idx,       \
                                                         in_idx,            \
                                                         vec_in_idx,        \
                                                         attr_idx,          \
                                                         out_idx + 1,       \
                                                         vec_out_idx>(      \
          dev_ctx,                                                          \
          inputs,                                                           \
          vec_inputs,                                                       \
          attrs,                                                            \
          outputs,                                                          \
          vec_outputs,                                                      \
          pargs...,                                                         \
          arg);                                                             \
    }                                                                       \
  }

#define PD_SPECIALIZE_KernelCallHelper_FOR_MULTI_OUTPUT(tensor_type)        \
  template <typename... Tail>                                               \
  struct CustomComputeCallHelper<std::vector<tensor_type*>, Tail...> {      \
    template <int dev_ctx_idx,                                              \
              int in_idx,                                                   \
              int vec_in_idx,                                               \
              int attr_idx,                                                 \
              int out_idx,                                                  \
              int vec_out_idx,                                              \
              typename... PreviousArgs>                                     \
    static void Compute(const DeviceContext& dev_ctx,                       \
                        const std::vector<Tensor>& inputs,                  \
                        const std::vector<std::vector<Tensor>>& vec_inputs, \
                        const std::vector<paddle::any>& attrs,              \
                        std::vector<Tensor*>* outputs,                      \
                        std::vector<std::vector<Tensor*>>* vec_outputs,     \
                        PreviousArgs... pargs) {                            \
      std::vector<tensor_type*> arg = (*vec_outputs)[vec_out_idx];          \
      CustomComputeCallHelper<Tail...>::template Compute<dev_ctx_idx,       \
                                                         in_idx,            \
                                                         vec_in_idx,        \
                                                         attr_idx,          \
                                                         out_idx,           \
                                                         vec_out_idx + 1>(  \
          dev_ctx,                                                          \
          inputs,                                                           \
          vec_inputs,                                                       \
          attrs,                                                            \
          outputs,                                                          \
          vec_outputs,                                                      \
          pargs...,                                                         \
          arg);                                                             \
    }                                                                       \
  }

template <typename T>
struct PtenTypeTag {};

template <typename F, F f>
struct CustomKernelFuncImpl;

template <typename Return,
          typename DevCtx,
          typename... Args,
          Return (*impl_fn)(DevCtx, Args...)>
struct CustomKernelFuncImpl<Return (*)(DevCtx, Args...), impl_fn> {
  static void Compute(const DeviceContext& dev_ctx,
                      const std::vector<Tensor>& inputs,
                      const std::vector<std::vector<Tensor>>& vec_inputs,
                      const std::vector<paddle::any>& attrs,
                      std::vector<Tensor*>* outputs,
                      std::vector<std::vector<Tensor*>>* vec_outputs) {
    CustomComputeCallHelper<DevCtx, Args..., PtenTypeTag<int>>::
        template Compute<0, 0, 0, 0, 0, 0>(
            dev_ctx, inputs, vec_inputs, attrs, outputs, vec_outputs);
  }

  // NOTE: Tensor in args is paddle::Tensor but not DenseTensor
  static void VariadicCompute(const DeviceContext& dev_ctx, Args... args) {
    return impl_fn(static_cast<DevCtx>(dev_ctx), std::forward<Args>(args)...);
  }

 private:
  template <typename... RemainingArgs>
  struct CustomComputeCallHelper;

  /* DeviceContext Helpers */
  PD_SPECIALIZE_KernelCallHelper_FOR_DEV_CONTEXT(CPUContext);

  /* Input Helpers */
  PD_SPECIALIZE_KernelCallHelper_FOR_INPUT(Tensor);
  PD_SPECIALIZE_KernelCallHelper_FOR_MULTI_INPUT(Tensor);

  /* Attribute Helpers */
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(bool);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(float);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(double);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(int);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(int64_t);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(pten::dtype::float16);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(DataType);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(const Scalar&);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(const ScalarArray&);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(const std::vector<int>&);
  PD_SPECIALIZE_KernelCallHelper_FOR_ATTRIBUTE(const std::vector<int64_t>&);

  /* Output Helpers */
  PD_SPECIALIZE_KernelCallHelper_FOR_OUTPUT(Tensor);
  PD_SPECIALIZE_KernelCallHelper_FOR_MULTI_OUTPUT(Tensor);

  // End: base template
  template <typename T>
  struct CustomComputeCallHelper<PtenTypeTag<T>> {
    template <int dev_ctx_idx,
              int in_idx,
              int vec_in_idx,
              int attr_idx,
              int out_idx,
              int vec_out_idx>
    static void Compute(const DeviceContext& dev_ctx,
                        const std::vector<Tensor>& inputs,
                        const std::vector<std::vector<Tensor>>& vec_inputs,
                        const std::vector<paddle::any>& attrs,
                        std::vector<Tensor*>* outputs,
                        std::vector<std::vector<Tensor*>>* vec_outputs,
                        DevCtx device_ctx,
                        Args... args) {
      return impl_fn(device_ctx, args...);
    }
  };
};

#define PD_PT_KERNEL(...) \
  ::paddle::CustomKernelFuncImpl<decltype(&__VA_ARGS__), &__VA_ARGS__>::Compute

#define PD_PT_VARIADIC_KERNEL(...)                            \
  reinterpret_cast<void*>(                                    \
      &::paddle::CustomKernelFuncImpl<decltype(&__VA_ARGS__), \
                                      &__VA_ARGS__>::VariadicCompute)

////////////////////// Op Kernel Info depended structs //////////////////////
// TODO(Aganlengzi): Re-define TensorArgDef and AttributeArgDef temporarily.
// TensorArgDef follows pten::TensorArgDef in kernel_factory.h, the
// difference is that custom_kernel needs extra `is_vector' to ensure we can
// deal with case like vector with only one element.
struct TensorArgDef {
  pten::Backend backend;
  pten::DataLayout layout;
  pten::DataType dtype;
  bool is_vector{false};

  TensorArgDef(pten::Backend in_backend,
               pten::DataLayout in_layout,
               pten::DataType in_dtype,
               bool is_vector = false)
      : backend(in_backend),
        layout(in_layout),
        dtype(in_dtype),
        is_vector(is_vector) {}

  TensorArgDef& SetBackend(pten::Backend in_backend) {
    backend = in_backend;
    return *this;
  }

  TensorArgDef& SetDataLayout(pten::DataLayout in_layout) {
    layout = in_layout;
    return *this;
  }

  TensorArgDef& SetDataType(pten::DataType in_dtype) {
    dtype = in_dtype;
    return *this;
  }
};

// AttributeArgDef follows pten::AttributeArgDef in kernel_factory.h
struct AttributeArgDef {
  std::type_index type_index;

  explicit AttributeArgDef(std::type_index type_index)
      : type_index(type_index) {}
};

////////////////////// Op Kernel Info //////////////////////
// OpKernelInfo stores all info parsed from user kernel function, includes:
// 0. op_name and kernel key(backend, data_layout and data_type)
// 1. unified custom kernel function
// 2. variadic kernel function(use paddle::Tensor)
// 3. args info and user defined change for specific arg
class PADDLE_API OpKernelInfo {
 public:
  explicit OpKernelInfo(const std::string& op_name,
                        pten::Backend backend,
                        pten::DataLayout data_layout,
                        pten::DataType data_type)
      : op_name_(op_name),
        backend_(backend),
        layout_(data_layout),
        dtype_(data_type) {}

  // format: PD_PT_KERNEL(...)
  OpKernelInfo& SetKernelFn(CustomKernelFunc&& func);
  // format: PD_PT_VARIADIC_KERNEL(...)
  OpKernelInfo& SetVariadicKernelFn(void* func);

  // for Args parsing and storing
  void AppendInput(pten::Backend backend,
                   pten::DataLayout layout,
                   pten::DataType dtype,
                   bool is_vector = false) {
    input_defs_.emplace_back(TensorArgDef(backend, layout, dtype, is_vector));
  }

  void AppendOutput(pten::Backend backend,
                    pten::DataLayout layout,
                    pten::DataType dtype,
                    bool is_vector = false) {
    output_defs_.emplace_back(TensorArgDef(backend, layout, dtype, is_vector));
  }

  void AppendAttribute(std::type_index type_index) {
    attribute_defs_.emplace_back(AttributeArgDef(type_index));
  }

  // for Args user-def function
  TensorArgDef& InputAt(size_t idx) { return input_defs_.at(idx); }
  TensorArgDef& OutputAt(size_t idx) { return output_defs_.at(idx); }

  const pten::Backend& GetBackend() const { return backend_; }
  const pten::DataLayout& GetDataLayout() const { return layout_; }
  const pten::DataType& GetDataType() const { return dtype_; }

 private:
  friend class framework::OpKernelInfoHelper;

  // 1. op info
  std::string op_name_;

  // 2. kernel key info
  pten::Backend backend_{pten::Backend::UNDEFINED};
  pten::DataLayout layout_{pten::DataLayout::UNDEFINED};
  pten::DataType dtype_{pten::DataType::UNDEFINED};

  // 3. args info
  paddle::SmallVector<TensorArgDef> input_defs_{{}};
  paddle::SmallVector<TensorArgDef> output_defs_{{}};
  paddle::SmallVector<AttributeArgDef> attribute_defs_{{}};

  // 4. func info
  CustomKernelFunc kernel_fn_{nullptr};
  void* variadic_kernel_fn_{nullptr};
};

////////////////////// Op Kernel Args Parser //////////////////////
// Define CustomKernelArgsParseFunctor for args parsing
// We have to store parsed info into OpKernelInfo before
// mapping to pten::KernelArgsDef in pten::Kernel
template <typename Func>
struct CustomKernelArgsParseFunctor;

template <typename Return_, typename... Args_>
struct CustomKernelArgsParseFunctor<Return_ (*)(Args_...)> {
  using Args = std::tuple<Args_...>;
  enum : std::size_t { Arity = sizeof...(Args_) };
  using Indices = std::make_index_sequence<Arity>;
  template <std::size_t Index>
  using Arg = typename std::tuple_element<Index, Args>::type;

  static void Parse(OpKernelInfo* op_kernel_info) {
    const pten::Backend& backend = op_kernel_info->GetBackend();
    const pten::DataLayout& layout = op_kernel_info->GetDataLayout();
    const pten::DataType& dtype = op_kernel_info->GetDataType();

    auto default_tensor_layout = pten::DataLayout::NCHW;
    if (layout != pten::DataLayout::ANY) {
      default_tensor_layout = layout;
    }
    auto args_type = ParseArgType(Indices{});
    for (auto arg_type : args_type) {
      if (arg_type == std::type_index(typeid(const CPUContext&))) {
        // do nothing, skip context arg now
      } else if (arg_type == std::type_index(typeid(const Tensor&))) {
        op_kernel_info->AppendInput(backend, default_tensor_layout, dtype);
      } else if (arg_type ==
                 std::type_index(typeid(const std::vector<Tensor>&))) {
        op_kernel_info->AppendInput(
            backend, default_tensor_layout, dtype, true);
      } else if (arg_type == std::type_index(typeid(Tensor*))) {
        op_kernel_info->AppendOutput(backend, default_tensor_layout, dtype);
      } else if (arg_type == std::type_index(typeid(std::vector<Tensor*>))) {
        op_kernel_info->AppendOutput(
            backend, default_tensor_layout, dtype, true);
      } else {
        op_kernel_info->AppendAttribute(arg_type);
      }
    }
  }

 private:
  template <std::size_t... INDEX>
  static std::vector<std::type_index> ParseArgType(
      std::index_sequence<INDEX...>) {
    return {std::type_index(typeid(Arg<INDEX>))...};
  }
};

#define PD_PT_ARGS_PARSE(...) \
  ::paddle::CustomKernelArgsParseFunctor<decltype(&__VA_ARGS__)>::Parse

//////////////// Op Kernel Info Map /////////////////
// all user custom kernels information are stored in this map
class PADDLE_API OpKernelInfoMap {
 public:
  static OpKernelInfoMap& Instance() {
    static OpKernelInfoMap g_custom_kernel_info_map;
    return g_custom_kernel_info_map;
  }

  std::vector<OpKernelInfo>& operator[](const std::string& name);

  const std::unordered_map<std::string, std::vector<OpKernelInfo>>& GetMap()
      const;

 private:
  OpKernelInfoMap() = default;
  std::unordered_map<std::string, std::vector<OpKernelInfo>> map_;

  PD_DISABLE_COPY_AND_ASSIGN(OpKernelInfoMap);
};

//////////////// Op Kernel Info Builder /////////////////
// format: PD_PT_ARGS_PARSE(...)
using CustomKernelArgsParseFn = void (*)(OpKernelInfo* op_kernel_info);
using CustomKernelArgsDefFn = void (*)(OpKernelInfo* kernel);

class PADDLE_API OpKernelInfoBuilder {
 public:
  explicit OpKernelInfoBuilder(std::string&& op_name,
                               pten::Backend backend,
                               pten::DataLayout data_layout,
                               pten::DataType data_type);

  OpKernelInfoBuilder& SetKernelFn(CustomKernelFunc func);
  OpKernelInfoBuilder& SetVariadicKernelFn(void* func);
  OpKernelInfoBuilder& ArgsParse(CustomKernelArgsParseFn func);
  OpKernelInfoBuilder& ArgsDef(CustomKernelArgsDefFn func);

 private:
  // op name
  std::string op_name_;

  // kernel key info
  pten::Backend backend_{pten::Backend::UNDEFINED};
  pten::DataLayout layout_{pten::DataLayout::UNDEFINED};
  pten::DataType dtype_{pten::DataType::UNDEFINED};

  // ref current info ptr
  OpKernelInfo* info_ptr_;
};
/////////////////////// Custom kernel register API /////////////////////////
// For inference: compile directly with framework
// Call after PD_REGISTER_KERNEL(...)
void RegisterAllCustomKernel();

// Using this api to load compiled custom kernel's dynamic library and
// register custom kernels
void LoadCustomKernelLib(const std::string& dso_name);

//////////////// Custom kernel register macro /////////////////
#define PD_BACKEND(arg__) pten::Backend::arg__
#define PD_DATALAYOUT(arg__) pten::DataLayout::arg__
#define PD_DATATYPE(arg__) pten::DataType::arg__

#define PD_REGISTER_KERNEL(name, backend, layout, dtype, func)                \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                             \
      __reg_kernel__##name##_##backend##_##layout##_##dtype,                  \
      "PD_REGISTER_KERNEL must be called in global namespace.");              \
  void __PD_USER_args_def_##name##_##backend##_##layout_##dtype(              \
      ::paddle::OpKernelInfo* op_kernel_info);                                \
  static ::paddle::OpKernelInfoBuilder                                        \
      __op_kernel_info_##name##_##backend##_##layout##_##dtype =              \
          ::paddle::OpKernelInfoBuilder(#name,                                \
                                        PD_BACKEND(backend),                  \
                                        PD_DATALAYOUT(layout),                \
                                        PD_DATATYPE(dtype))                   \
              .SetKernelFn(PD_PT_KERNEL(func))                                \
              .SetVariadicKernelFn(PD_PT_VARIADIC_KERNEL(func))               \
              .ArgsParse(PD_PT_ARGS_PARSE(func))                              \
              .ArgsDef(                                                       \
                  &__PD_USER_args_def_##name##_##backend##_##layout_##dtype); \
  void __PD_USER_args_def_##name##_##backend##_##layout_##dtype(              \
      ::paddle::OpKernelInfo* kernel)

}  // namespace paddle