parallel_executor.h 2.7 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <unordered_set>

#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
31 32 33
class ParallelExecutorPrivate;
class VarHandle;
class OpHandle;
Y
Yu Yang 已提交
34
class VarHandleBase;
Y
Use mtx  
Yu Yang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

struct GuardedBool {
 public:
  GuardedBool() {}

  operator bool() const {
    std::lock_guard<std::mutex> g(mtx_);
    return value_;
  }

  GuardedBool& operator=(bool o) {
    std::lock_guard<std::mutex> g(mtx_);
    value_ = o;
    return *this;
  }

 private:
  mutable std::mutex mtx_;
  bool value_;
};

Y
Yang Yang 已提交
56
class ParallelExecutor {
Y
Yu Yang 已提交
57
 public:
Y
Yang Yang 已提交
58
  explicit ParallelExecutor(const std::vector<platform::Place>& places,
Y
Yu Yang 已提交
59 60 61 62 63
                            const std::unordered_set<std::string>& params,
                            const ProgramDesc& startup_program,
                            const ProgramDesc& main_program,
                            const std::string& loss_var_name, Scope* scope);

Y
Yu Yang 已提交
64 65
  void Run(const std::vector<std::string>& fetch_tensors,
           const std::string& fetched_var_name = "fetched_var");
Y
Yang Yang 已提交
66 67

 private:
Y
Yu Yang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80
  ParallelExecutorPrivate* member_;

  void BCastParamsToGPUs(const ProgramDesc& startup_program) const;

  VarHandle* GetVarHandle(const std::string& each_var_name,
                          const platform::Place& place) const;

  void GenerateVar(OpHandle* op_handle, const std::string& each_var_name,
                   const platform::Place& place) const;

  void ConstructDependencyGraph(const std::unordered_set<std::string>& params,
                                const ProgramDesc& main_program,
                                const std::string& loss_var_name) const;
Y
Yu Yang 已提交
81 82

  void BuildNCCLCommunicator() const;
Y
Yu Yang 已提交
83

Y
Use mtx  
Yu Yang 已提交
84
  void RunOp(std::unordered_map<VarHandleBase*, GuardedBool>& pending_vars,
Y
Yu Yang 已提交
85
             OpHandle* op) const;
Y
Yu Yang 已提交
86 87

  void PolishGraphToSupportDataHarzaeds() const;
Y
Yang Yang 已提交
88 89 90 91
};

}  // namespace framework
}  // namespace paddle