rnn.py 7.5 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
#!/usr/bin/env python
from six.moves import xrange  # pylint: disable=redefined-builtin
import math
import time
import numpy as np
from datetime import datetime

import reader
import tensorflow as tf
from tensorflow.python.ops import rnn

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_integer('batch_size', 128,
                            """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_integer('num_layers', 1,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_integer('max_len', 100,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_boolean('forward_only', False,
                            """Only run the forward pass.""")
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
                            """Only run the forward-forward pass.""")
tf.app.flags.DEFINE_integer('hidden_size', 128,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_integer('emb_size', 128,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

VOCAB_SIZE=30000
NUM_CLASS=2

def get_feed_dict(x_data, y_data=None):
    feed_dict = {}

    if y_data is not None:
        feed_dict[y_input] = y_data

    for i in xrange(x_data.shape[0]):
        feed_dict[x_input[i]] = x_data[i, :, :]

    return feed_dict

def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")


# Note input * W is done in LSTMCell, 
# which is different from PaddlePaddle
def single_lstm(name, incoming, n_units, use_peepholes=True, 
         return_seq=False, return_state=False):
  with tf.name_scope(name) as scope:
    cell = tf.nn.rnn_cell.LSTMCell(n_units, use_peepholes=use_peepholes)
    output, _cell_state = rnn.rnn(cell, incoming, dtype=tf.float32)
    out = output if return_seq else output[-1]
    return (out, _cell_state) if return_state else out

def lstm(name, incoming, n_units, use_peepholes=True, 
         return_seq=False, return_state=False, num_layers=1):
  with tf.name_scope(name) as scope:
    lstm_cell = tf.nn.rnn_cell.LSTMCell(n_units, use_peepholes=use_peepholes)
    cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_layers)
    initial_state = cell.zero_state(FLAGS.batch_size, dtype=tf.float32)
    if not isinstance(incoming, list):
        # if the input is embeding, the Tensor shape : [None, time_step, emb_size]
        incoming = [tf.squeeze(input_, [1])
                  for input_ in tf.split(1, FLAGS.max_len, incoming)]
    outputs, state = tf.nn.rnn(cell, incoming, initial_state=initial_state,
                               dtype=tf.float32)
    out = outputs if return_seq else outputs[-1]
    return (out, _cell_state) if return_state else out


def embedding(name, incoming, vocab_size, emb_size):
  with tf.name_scope(name) as scope:
    #with tf.device("/cpu:0"):
      embedding = tf.get_variable(
            name+'_emb', [vocab_size, emb_size], dtype=tf.float32)
      out = tf.nn.embedding_lookup(embedding, incoming)
      return out 

def fc(name, inpOp, nIn, nOut, act=True):
    with tf.name_scope(name) as scope:
        kernel = tf.get_variable(name + '_w', [nIn, nOut],
            initializer=tf.truncated_normal_initializer(stddev=0.01, dtype=tf.float32),
            dtype=tf.float32)

        biases = tf.get_variable(name + '_b', [nOut],
            initializer=tf.constant_initializer(value=0.0, dtype=tf.float32),
            dtype=tf.float32,trainable=True)

        net = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
                  tf.matmul(inpOp, kernel) + biases

        return net

def inference(seq):
    net = embedding('emb', seq, VOCAB_SIZE, FLAGS.emb_size)
    print "emb:", get_incoming_shape(net)
    net = lstm('lstm', net, FLAGS.hidden_size, num_layers=FLAGS.num_layers)
    print "lstm:", get_incoming_shape(net)
    net = fc('fc1', net, FLAGS.hidden_size, 2)
    return net

def loss(logits, labels):
    # one label index for one sample
    labels = tf.cast(labels, tf.float32)
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
                    logits, labels, name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)
    return tf.add_n(tf.get_collection('losses'), name='total_loss')


def time_tensorflow_run(session, target, x_input, y_input, info_string):
  num_steps_burn_in = 50
  total_duration = 0.0
  total_duration_squared = 0.0
  if not isinstance(target, list):
    target = [target]
  target_op = tf.group(*target)
  train_dataset = reader.create_datasets("imdb.pkl", VOCAB_SIZE)
  for i in xrange(FLAGS.num_batches + num_steps_burn_in):
    start_time = time.time()
    data, label = train_dataset.next_batch(FLAGS.batch_size)
    _ = session.run(target_op, feed_dict={x_input:data, y_input:label})
    duration = time.time() - start_time
    if i > num_steps_burn_in:
      if not i % 10:
        print ('%s: step %d, duration = %.3f' %
               (datetime.now(), i - num_steps_burn_in, duration))
      total_duration += duration
      total_duration_squared += duration * duration
  mn = total_duration / FLAGS.num_batches
  vr = total_duration_squared / FLAGS.num_batches - mn * mn
  sd = math.sqrt(vr)
  print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
         (datetime.now(), info_string, FLAGS.num_batches, mn, sd))


def run_benchmark():
  with tf.Graph().as_default():
    global_step=0
    with tf.device('/cpu:0'):
        global_step = tf.Variable(0, trainable=False)
    with tf.device('/gpu:0'):
      #x_input = tf.placeholder(tf.int32, [None, FLAGS.max_len], name="x_input")
      #y_input = tf.placeholder(tf.int32, [None, NUM_CLASS], name="y_input")
      x_input = tf.placeholder(tf.int32, [FLAGS.batch_size, FLAGS.max_len], name="x_input")
      y_input = tf.placeholder(tf.int32, [FLAGS.batch_size, NUM_CLASS], name="y_input")
      # Generate some dummy sequnce.


      last_layer = inference(x_input)

      objective = loss(last_layer, y_input)
      opt = tf.train.AdamOptimizer(0.001)
      grads = opt.compute_gradients(objective) 
      apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

      init = tf.initialize_all_variables()
      sess = tf.Session(config=tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=FLAGS.log_device_placement))
      sess.run(init)

      run_forward = True
      run_forward_backward = True
      if FLAGS.forward_only and FLAGS.forward_backward_only:
        raise ValueError("Cannot specify --forward_only and "
                         "--forward_backward_only at the same time.")
      if FLAGS.forward_only:
        run_forward_backward = False
      elif FLAGS.forward_backward_only:
        run_forward = False

      if run_forward:
        time_tensorflow_run(sess, last_layer, x_input, y_input, "Forward")

      if run_forward_backward:
        with tf.control_dependencies([apply_gradient_op]):
            train_op = tf.no_op(name='train')
        time_tensorflow_run(sess, [train_op, objective], x_input, y_input, "Forward-backward")


def main(_):
  run_benchmark()


if __name__ == '__main__':
  tf.app.run()